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What can hep-th say about expanding spacetimes?



What can hep-th say about expanding spacetimes?
We will focus in Quantum Field Theories on a rigid de Sitter

spacetime.



What can hep-th say about expanding spacetimes?
We will focus in on a

Despite being in a simplified scenario many basic QFT notions
get challenged. We need to develop new tools and ideas to
understand such features.



X0 g9 “X§HXP+ A X =




X0 Gl “X§+ X2+ + XG =1
Planar Patch Global Patch

ds?  —dn? + dx? ds?

= "T - = —d7? + cosh 7240’

It is a maximally symmetric time dependent spacetime
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Preface: Motivation

The explicit time dependence precludes a global notion of Energy
in dS. In de Sitter

Not clear how to integrate out heavy fields. The UV never fully
decouples from the IR. No clear Wilsonian paradigm!



Preface: The Limits of perturbation theory

To connect with the physics of Inflation and the CMB we are
interested in equal-time/late time correlators
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N
Diagrams with N—time integrals ~ (Iog %)
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e It is unitary
e |t is interacting
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The Schwinger model
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[e] = L™1; the theory is not scale invariant.
MOSﬂy Stud|ed in ﬂat Space [Schwinger, Lowenstein-Swieca, Jackiw-Rajamaran, Adam,- - - ].
AISO in Curved Spacetlmes [Gass,Oki-Oyada-Tanikawa,Barcelos-Neto-Das, Ferrari, Jayewardenal.



The Schwinger model
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[e] = L~1; the theory is not scale invariant.
Mostly studied in flat space
Also in curved spacetimes

The theory remains solvable in de Sitter and all observables can
be computed at all loops. This provides a solvable model for an
interacting quantum field theory on a fixed de Sitter background



A 2d apology

The spectrum of particles in 2d mimics the one in 4d.

The theory has gauge symmetries and interacting massless

fields and fermions.

There are non-perturbative sectors!

There is a lack of explicit models (in any d) that provide
sharp analytic data to probe features of dS.
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The Schwinger model
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SSchwinger = //\/( d2X \/E |:\U’YH (vu + IAN) v+ 4CQF#VF;W:| )
We want to solve the theory and probe the interactions
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The Schwinger model: Symmetries

A, = A+ ih(x)L9h(x) ,  h(x) = €™ e U(1)
V(x) = h(x)V¥(x) , V(x) — ‘~TI(><)h(x)*1 ;

The theory also admits a separete axial U(1) global symmetry

W(x) = Py (x) W(x) = U(x)eP

The symmetry does not survive at the quantum level due to the
axial anomaly and is ultimately responsible for making the theory

SO|Va ble [Jackiw-Rajaraman, Roskies-Schaposnik, Fujikawa]
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The Schwinger model: Gauge Invariant Operators

We will be interested in comsidering the following operators

O(n,x) : F = 1 %)
(1, x )W (x1, x2)V (2, x2)

v(n,x),

-el <l
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The Schwinger model: Gauge Invariant Operators

We will be interested in comsidering the following operators

O(n,x) : F = 1 %)
(1, x )W (x1, x2)V (2, x2)

v(n,x),

(O(n1,x1) - - O(1m2, x2)) Z}'{e@ ug }

-el <l

udS — (ni — TIJ)Z — (X — Xj)2
Y 2nn;
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The Schwinger model: Topological sectors

Gauge field configurations break up into sectors labeled by their
winding number

1 v
-~ d’x\/g e Fu =k €T .

1
A —kCl(L), cW

:—gl/ XV_ 12
K )\2+(x—y)2u ( Y’

e In flatspace they are off-shell configurations.

e Minimum-energy configuration is an infinite size instanton
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The Schwinger model: Approach

We compute the generating functional of connected correlators
[Anninos-Anous-ARF].

e Fix the Lorenz gauge, in 2d

e Use the Chiral anomaly to disentangle the gauge field-fermion

interaction
e Fermion theory becomes free

e The interaction term becomes a mass term for the gauge field

transverse fluctuation ¢

1 2 2 2 2
52262/d X\/—gd)v (V —m)CD,

20
L, €l 1 1 /1
627 Azf _ _ 262 1
m — 2 TaVa ™ (1)
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The Schwinger model: Electric field 2-point function

F(x) = —V2®d(x) where ®(x) is a m2(? = % scalar field

Golen) = (1- 1)
Uy

[|og % FT(A)(1— A)oFy (A, 1-A1;1- 7)}

N e

(EIF(x)F(y)|E) = VZVy(E[®(x)P(y)|E) = ViVyGo(x,y).

ii5)



The Schwinger model: Electric field 2-point function

F(x) = —V2®d(x) where ®(x) is a m2(? = €L scalar field

™

(EIF(x)F(y)|E) = VIV (E|o(x)®(y)|E) = ViViGo(x,y).

= EVE) —e20 (X —Y)
EIFCF()IE) ==
_e4r(A)25T12—A)2F1 (a1-4,1,1-22),

e This is an exact result in the coupling e?
e All the loops are encoded in the e — 0 limit

e The result is explicitely dS invariant
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The Schwinger model: Electric field 2-point function

as _ (=my)’ = (x=y)*
4 277><77y

The equal time late-time limit, in this case, is given by

u

Nx =Ny =n withn — 07.
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The Schwinger model: Electric field 2-point function

as _ (x—1my)? — (x —y)?

277><77y .

The equal time late-time limit, in this case, is given by
Nx =Ny =n withn — 07.

= = (A@L-A)N\ [T -28)(a) P2
<F(X)F(Y)> - < 242 { r(l . A) (X _y)2A

reA—-1r(1—A4a) »20-4)
r(a) (x—y)m T
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The Schwinger model: Electric field 2-point function

2 e4

2
. . == e n
| | F(x)F = 14+ log — 1
i im (FFO) = -2 + 2 (“g( y>2)*

The perturbative loop expansion results in the appearance of
late-time logarithms that are resummed to a de Sitter invariant
function
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The Schwinger model: Fermionic 2-point function

Fermionic correlation functions probe the non-perturbative
(instantons) sectors k = 0, +1

Su(x,y) = ETWEIVIE),  Wxy)=e oy &AL
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The Schwinger model: Fermionic 2-point function

Fermionic correlation functions probe the non-perturbative
(instantons) sectors k = 0, +1

Su(x,y) = ETWEIVIE),  Wxy)=e oy &AL

e The Wilson line dressing renders the correlator gauge invariant

e To compute one has to be careful with zero modes
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Fermionic 2-point function

(0) o
Szp (X7y) — _277_[_6 exp(G¢(O) - G¢(X, y)) 5
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Fermionic 2-point function

(0) o
Szp (X7y) — _277_[_6 exp(G¢(0) - G¢(X, y)) 5

(+1) (-1) _e2 ke Uy \Z Gy (0)+Golxy)

e In the €2 — 0 regime the topological sectors are exponentially
supressed

e The result is dS invariant despite the presence of monopoles

20



Fermionic 2-point function

eGe(0)—Go(xy)

ST/}(X7y) = = ol

1
14 et (1 ) )]

21



Fermionic 2-point function

eGo(0)~Go(x)
Slll(x? y) = = 27_‘_£

1
14 et (1 ) )]

lim Sy(x,y) = L [1+i€: (7r2—6Li2< — ﬂ)> Jr:| .

e2—0 27l 2
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Fermionic 2-point function

1
. 2 4
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Fermion Bi-Linear

We can also compute

O(x) = lim W(y)¥(x)

y—X

This allows us to compute (O(x1) - - - O(x,)) in terms of
2n—fermion correlation functions
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Fermion Bi-Linear

We can also compute

O(x) = lim W(y)¥(x)

y—X

This allows us to compute (O(x1) - - - O(x,)) in terms of
2n—fermion correlation functions

460l 72 1 4rGA A
_ s 5 " = TGP (u) —47GP (u)
(OROW) = T35 (7 + e W)
M1-—-A)IA u
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Fermion Bi-Linear

O-(x) = (Pr¥r) (x)

4G (0) ,—4mG(uxy)
e e
4722 ’

(O-(x)0-(y)) =

(O-(x)O-(y)) =xexp (1 = —35 + 4Go(0))
— 2A =
5 <_ r(ﬁr)l_l_(gl_ E)A) ’Z%g + (A N A) dlog > ,

These operators do not behave as primaries of a CFT!
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Conclusions

e The Schwinger model is an exactly solvable QFT on a fixed
dS» background

e We can compute exact, all-loops, non-perturbative correlation
functions on dS,

e This model provides sharp analytic results that we can use to
probe new techniques for expanding spacetimes

e We can explicitly show how the loop expansion re-sums to
invariant correlation functions

e The model can be generalised to have fermions of charge g.
The theory then contains g Hadamard de Sitter invariant

vacuum States‘ [Anninos-Anous-Aguilera-Damia-ARF]
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Thank You!

Questions?
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