COsmic-ray Detection Array with Logarithmic ElectroMagnetic Antennas

P. Lautridou – SUBATECH

@ NANÇAY (some tens dipôles) @ AUGER-Sud (3 dipôles in 2007)

=> PHASE 1 (2002-05): Enlightenment of the Methode =>PHASE 2-3: (2006-08): Energy Calibration from 10¹⁶ to 10¹⁸ eV

The CÓDALEMA e llaboration: 3 Instituts – 8 Exporatories SUBATECH Nantes (IN2P3, 2002) Obs. de Paris-Meudon (INSU, 2002) - Station de Nançay (INSU, 2002) LAL Órsay (IN2P3, 2004) - ESEO Angers (2004) LPSC Grenoble (IN2P3, 2005) LAOB Besançon (INSU, 2006) - LPCE Orléans (INSU, 2006) + support of the Lab. of AUGER-France for the tests @ AUGER-Sud

UHCR studies address the problematic of the

ORIGINE & NATURE of the cosmics

Complementary to hybride techniques Optical Cerenkov Surface particles det.

Radio-detection: longitudinal development, macroscopic observables, long range detection, inclined showers, cheap, high duty cycle

Contents

- Radio-emission framework
- Experimental méthodologies & CODALEMA performances for transients
- CODALEMA EAS Results
- LOPES EAS results
- Present & futur developments of radiodetection with CODALEMA

Radio-emission framework

La radiodétection

- **1962:** Prédiction théorique effet Askar'yan
- **1964-65: Première expérience -** T.C. Weekes
- Milieu 70 ': Méthode délaissée difficultés d'interprétation et de détection + succès d'autres techniques
- Fin 90 ': Redécouverte dans milieux denses (glace, sel) =>neutrinos
- En 1999: Preuve du principe sur accélérateur (sable, D. Saltzberg,)
- En 2000 : Expérience sur CASA-MIA (K.Green et al., 2003, N.I.M. A, 498)
- En 2002 Expérience LOPES sur KASCADE Expérience CODALEMA de SUBATECH
- En 2005 : H. Falcke et al., Nature, May 19, 2005 P. Lautridou et al. NIM A555 2005 & astro-ph 2003-2005

En 2006-07: CODALEMA en prospectives sur PAO En 2008: CODALEMA sur 3 continents: Am, Eur, Asie?

Les résultats expérimentaux de 1970

H.R Allan, Prog. in Elem. Part. Cosmic Ray Phys., 10 (1971), p.171

- Développements théoriques basés sur une analyse fréquentielle du signal
 - 1 antenne résonante (Δf=1 MHz)
 - en coïncidences avec des détecteurs de particules chargées au sol

Des certitudes maisdes incohérences (Haverah Park, Yakutsk,...)

Théorie: quelle approche?

Analyses en fréquence (1970) — en forme d'onde (2000) Cadre préliminaire (1970) — «coming out» théorie (2007)

-Semi-empirique

Description macroscopique (lois de comportement simples + modèles analytiques): SUBATECH, Obs. de Paris, KVI

-Monte-Carlo élaboré

Codes CORSIKA, AIRES, CONEX ? & modèles semi-analytiques d'émission radio: SUBATECH, LAL, LPSC

-Code dédié LOPES (T. Huege 2004)

Description microscopique de l'émission synchrotron (FZK)

Trouver les variables discriminantes!!

- -Asymétrie nord-sud ?
- -Extension latérale ?
- -Polarisation ? (longitudinale? Transversale?) (Mesure des états de polarisations en cours sur CODALEMA)

T. Hugues 2004

(based on microscopic synchrotron calculations) Frequency spectra @ $10^{17} eV$

- For vertical showers
- 10 MHz: very coherent
- 55 MHz: coherence only up to ~ 300 m
- Favourable for inclined showers
- Approx. Exponential scaling

But frequency spectra seem not models discriminating...

T. Hugues: Polarisation @10¹⁷ eV, 10 MHz

45° zenith angle, 0° azimuth

45° zenith angle, 90° azimuth

- most power in polarisation direction perpendicular to B-field and shower axes
- But North-South asymmetry not predicted !?

T. Hugues: Scaling with E_p @10 MHz

T. Gousset et al. (2004):Simulations de gerbes horizontales (basées sur des grandeurs macroscopiques) E=10²⁰ eV + 10 % Excès de charge (0.7 10¹⁰ e⁻)

K. Werner et al. (2007)

(basés sur des grandeurs macroscopiques de la gerbe)

incluant:

- ⇒Extension longitudinale des secondaires
- ⇒Extension latérale
- ⇒Épaisseur de la galette

 \Rightarrow Distribution en γ

⇒Vision macroscopique
 de la source du champ
 électrique: Courant
 dipolaire
 (en cours de publication)

 $E(\mathbf{t},\mathbf{r}) = \frac{1/4\pi\epsilon \ \Sigma_t, \ (1-\mathbf{v}^2/\mathbf{c}^2) \ \mathbf{q}(\mathbf{t}') \ .(\mathbf{R}-\mathbf{R}\mathbf{v}/\mathbf{c})}{|\mathbf{R}-\mathbf{R}.\mathbf{v}/\mathbf{c}|^3} + \frac{1/4\pi\epsilon \ \Sigma_t, \ \mathbf{q}'(\mathbf{t}') \ (\mathbf{R}-\mathbf{R}\mathbf{v}/\mathbf{c})}{|\mathbf{R}-\mathbf{R}.\mathbf{v}/\mathbf{c}|^3} + \frac{1/4\pi\epsilon \ \Sigma_t, \ \mathbf{q}(\mathbf{t}') \ \mathbf{R}^{-1}(\mathbf{R}-\mathbf{R}\mathbf{v}/\mathbf{c})^{-1}\mathbf{v}'}{|\mathbf{R}-\mathbf{R}.\mathbf{v}/\mathbf{c}|^3}$

Experimental méthodologies & CODALEMA performances for transients

La démarche expérimentale

•Simulation théorique: Informations contenues dans la forme du signal

- •Amplitude (>1 μ V/m) => énergie
- •Durée (~100 ns) => paramètre d'impact (b)
- •Forme d'onde => nature des particules

- •Mesures expérimentales:
 - •Evts rares (trigger~10⁻³ Hz)
 - •Analyse temporelle du signal=>direction d'arrivé
 - •Analyse de l'amplitude =>Extraction de l'énergie du primaire

La Recherche des impulsions

=> information temporelle Mais le signal réel est dans du bruit: capteur, RFI, signal galactique, etc...

Schéma du Trigger radio de CODALEMA @ Nançay

Stratégie en 2 étapes:

- 1. Taux de trigger On-line >> Taux de transitoires EAS...
- 2. EAS identifiés off-line par analyse de la forme d'onde utilisant un critère de sélection par le nombre d'antennes touchées

Transient recognition

0.01 1 trigger antenna -0.0 voltage threshold on a 0.05 devoted filtered antenna Voltage Amplinde (V) n (33-65 MHz) 0.5 1 distant antenna (1 km) MMMA 0 @10-100 MHz -0.5 0.5 **5 broad band antennas** -0.5 (1-100 MHz) 0.01 -0.01 0.01 With Flash ADC 8bits -**500 MS/s - 10μs** -0.01 0.03 After 33-65 MHz off-line numerical filtering 0.02 0

Principe d'extraction de la forme d'onde large bande

via un filtrage FFT + une methode On-Off

Principe d'extraction de la forme d'onde large bande

via un filtrage FFT + un modèle de transitoire

Triangulation performances (1)

(using Solar bursts)

DAM sun survey 15/01/05 & 02/06/06

Triangulation performances (2) (using Solar bursts)

Signal sensibility

Distributions of the ground floor signal in the 40-70 MHz band after cross calibration of the antennas gains

CODALEMA EAS Results

• Trigger capabilities : (1 ant. + narrow band)

> • Shower direction : triangulation (several ant. + time tagging)

> > • field topology: extend & core location (several ant. + field distribution on the ground)

> > > • Primary particle energy : total charge ~ electric field (amplitude of the signal)

> > > > • Nature : longitue inal profile, X_{max} (shape of the signal)

Radiodetection capabilities

with CODALEMA

Expected Signal @ 1017 eV

With Vertical shower @ small impact parameter @ Nançay

CODALEMA 2004-05 with spiral Ant.

DAM: (Decametric Array) of the

radio observatory of Nançay

spiral log periodic ant., 1-100 MHz (3Db), 90 Lobe, circular pol. FILTERED IN 24-80 MHz Waveform 8 bits, 500 MS/s, 10 μs

TRIGGER: 4 Stations of Scintillators (2 m²) in coincidences

Signal recording + Time of fly analysis

=> Reconstruction of the shower directions

CODALEMA 2007 setup with dipoles

Scintillator

Dipole Array 1-200 MHz 12 bit ADC

Scintillator distributions (internal)

 ϕ (degree) Azimuthal distribution

Shower energy deduced from scintillator data (CIC method, precision 30 %)

=> Energy threshold ~ 10¹⁵ eV

Statistic 2007

Effective time (since december 2006) Number of trigger (5 central stations) (Counting rate= 1 evt/day) With internal events (Energy Known)	170 days	
	33 795 18 354	
		With Radio coincidences (>= 3 antennas tagged)
+ ∆time < 200ns + ∆ang.< 20° rate=0.83 evts/day)	141 (Counting	
+ Energy Known	43	

<u>Radio-particles time & Arrival direction</u> <u>coincidences</u> (for \geq 3 antennas flagged)

<u>Electric Field topologies</u>

Variable antenna multiplicity (limited array)

Shower reconstruction

Energy distribution & efficiency of radio

Histogram not corrected for the acceptance

=> But detection efficiency depend on the measured polarisation?

Shower arrival directions

Showers arrival directions / Energy

Evidence for a geomagnetic effect in the radio emission process ?

=>Strong constraints on the emission
process model ?
=>Impose Full-polarisation detection ?

For the 41 « radio + internal showers » with known energies (30% accuracy with CIC method)

 α : angle between GMF and cosmic ray arrival direction

Dipôle event (23-130 MHz) @ E~2.5 10¹⁸ eV (from particle Det.)

Frequency spectrum

Influence de la fréquence sur les informations physiques ?

Analyse hybride LDF Particules – LDF Radio

RADIATED ENERGY (geosynchrotron,...Poynting) ?? $\Rightarrow E_{\text{primary}} \sim \int P \cdot dS = E_0^2 \cdot d_0^2 / \sin^2(\gamma)$??

Tentative of energy estimation (2)

(very preliminary)

 $E_0 \cdot d_0^2$ spectrum (a.u.) $E_0^2 \cdot d_0^2 / \sin^2(\gamma)$ spectrum (a.u.)

=> Need more statistics

LOPES EAS results

LOPES

10 LOFAR antennas Trigger KASCADE

Bandwidth: 40-80 MHz + Sampling: 80 MS/s

LOPES 10: Results with KASCADE-Grande

Correlation of the radio pulse height with the mean distance of the shower axis

Correlation of the radio pulse height with the primary energy of the shower

Present & futur developments of the radio-detection with CODALEMA

Schedule @ NANÇAY (ANR 2006-2008)

Evt by evt energy calibration < 10¹⁸ eV before end of 2008

Autonomous dipoles:

trigger,
data taking (ADC
MATACQ 12 bits, Full
Bandwidth 0-250 MHz)
Time tagging
data transmission,
power supply

•2007 (autonomous dipoles)•2008 (autonomous dipoles)

Signal similation @ 10²⁰ eV

Constant directivity

Normalised gain in E and H plane versus the Elevation angle

short active dipole (1)

Aluminium dipole antenna

Preamplifier ASIC

+ ADC MATACQ (12 bits,
up to 1 GS/s, 2500 Samples)
+ Full Bandwidth (0-250 MHz)

The CODALEMA Short active Dipole (2)

^{18.02} High sensitivity wide bandwidth

Date:

Very good astronomical performances on a wide band

Trigger rate in 33-65 band with 1 antenna

Knowledge of the transient radio background

Radio Measurements at PAO

Test of radiodetection $@ > 10^{18}$ eV in coincidence with PAO

- 3 Autonomous Self-Triggered Broad Band Dipoles
- Off-line coincidences with PAO
- Electric field extension
- Energy Calibration @10¹⁸ eV

Installed since Nov. 2007 @ PAO

Sky background @ PAO (2005)

Investigations parallèles dans l'ANR

Radio-Astronomie impulsionnelle (Obs. de Paris-Nancay)

- DAM numérique (radiotélescope 2π.sr + phasage numérique + technique du snapshot pour s'affranchir des turbulences)
 - Détection EAS < 10¹⁶ eV
 - Imagerie
 - Pulsar Giant pulses, Solar burst... unknown sources ... Gamma showers (« à la HESS »), ...

Physique de l'Atmosphère (LPCE Orléans)

Décharges: Eclairs, Elfes, Sprites, Blue Jet, Elve, γ Flash, seismology...

Hors ANR (budget)

Test de detection sur Auger-Sud

Prospectives

EAS radio detection at lower energy

- Charged of Low energy? (Aragats gamma detector @ 3200m, vertical showers at Xmax, @10¹⁵-10¹⁶ eV, in run (Y. Gallant LPTA)
 - @Tibet @ 4200m, <1015 eV (O. Martino LPNHE)?

Gamma ? (« à la HESS » + radio Cerenkov pulses + small field of view radiotelescopes? @ 10¹²eV)

Neutrino ? (inclined atmospheric showers at the horizon + large antenna array ? @10¹⁸ eV)

Radio-Détection à la HESS vers 10¹² eV ?

Detection of horizontal EAS

Radio-detection could be in nature adapted to the detection of atmospheric neutrinos ?

Détection de v horizontaux

Set-up: réseau étendu

