Instrumentation Challenges and Computational Challenges

Developments since EPPSU 2020

- a (hopefully not too) personal selection -

Roman Pöschl

R.P. Is indebted to a number of distinguished colleagues in particular Marc Winter, Paul Colas and David Rousseau for having provided input to this talk

IRN Terascale/GT01 Meeting – October 2024

Vertex / Tracker

EPPSU 2020 – Brief recap

mPMT 16

phase TPC

From Briefing Book EPPSU 2020

Solid state	Gas	Scintillator	Noble liquid	Cherenkov
Challenges: hig	gh spatial res	solution, high rate	e/occupancy, fas	t/precise timing,
radiation hardne	ess low mas	s 4D tracking		

Technologies

Planar, 3D, (D)MAPS ¹ , LGAD ² , (HV-HR) CMOS ³	TPC ⁴ , DC ⁵	SciFi ⁶ + SiPM ⁷		
--	------------------------------------	--	--	--

Colonimator	Challenges: high granularity, radiation hardness, large volume, excellent
Calorimeter	hit timing, PFA/dual-readout capability, 5D imaging.

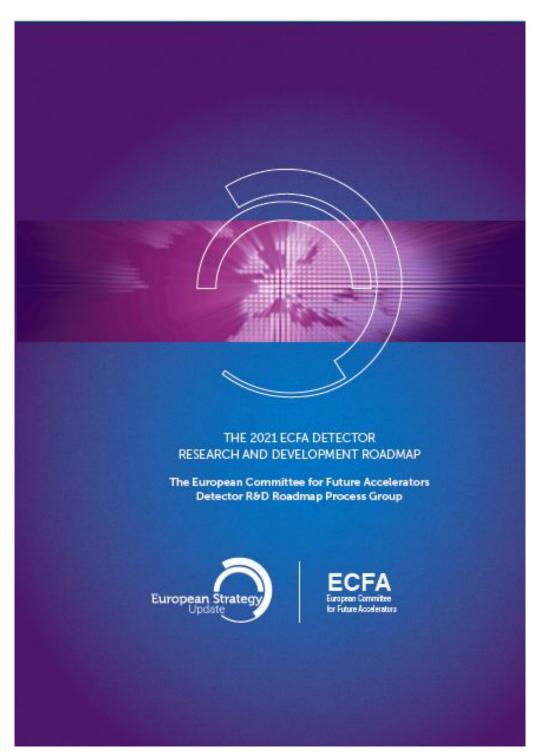
Si sensors sampling	RPC ⁸ or MPGD ⁹ sampling	Tile/fibers + SiPM sampl., homogeneous crystals (e.g. LYSO)	LAr sampling	Quartz fibers sampling in dual-readout
------------------------	--	---	-----------------	--

Muon detector	Challenges: 1	arge area, low o	cost, spatial reso	lution, high rate	ż.
		MPGD, RPC, DT ⁹ MWPC ¹⁰	Scint+ WLS fibers + SiPM		
PID / TOF	A STATE OF THE PARTY OF THE PAR		ection efficiency ation ≤ 10 ps, ra		
	LGAD (timing)	TPC, DC, MRPC 11 (timing)			RICH ¹² , TOF ¹³ , TOP ¹⁴ , DIRC ¹⁵
Neutrino / Dark Matter			ection efficiency e, large area phot		ume,radio
	Si, Ge	TPC	liquid scint., scint. tiles /	single/dual-	water/ice +

bars

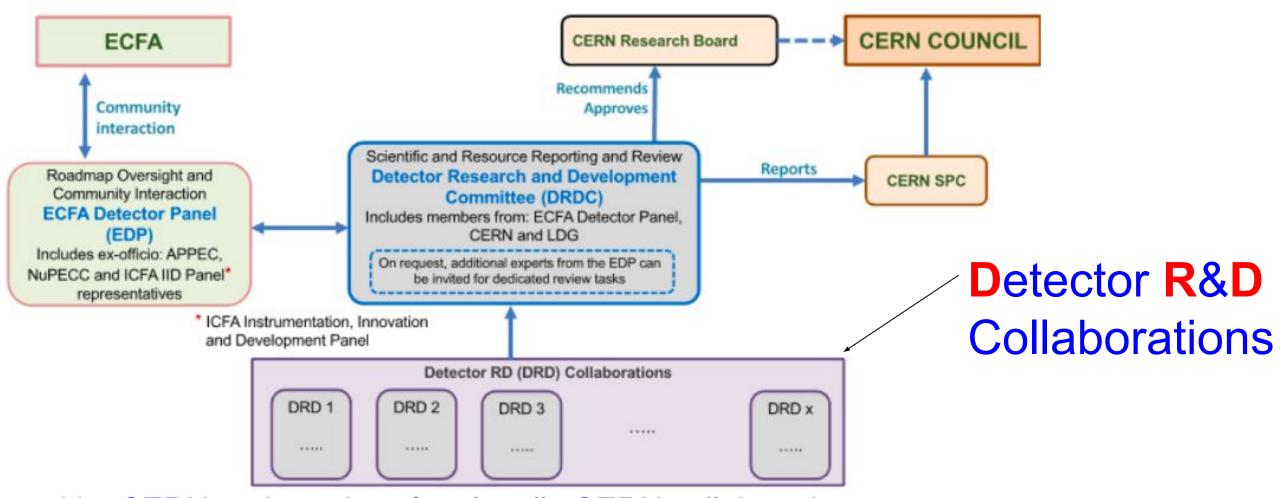
The EPPSU charged ECFA to develop an R&D Detector Roadmap

The Roadmap Document(s)


- ECFA R&D Roadmap
 - CERN-ESU-017 https://cds.cern.ch/record/2784893
 - 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

The Roadmap has identified

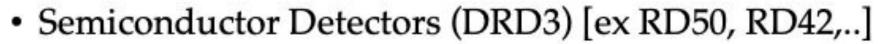
- General Strategic Recommendations (GSR)
- Detector R&D Themes (DRDT)
- Concrete R&D Tasks
- Timescale of projects as approved by European Lab Director Group (LDG)


Guiding principle: Project realisation must not be delayed by detectors

Future Organisation of Detector R&D (in Europe)

- DRDs are hosted by CERN and are therefore legally CERN collaborations
 - World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - https://committees.web.cern.ch/drdc
 - Chair Thomas Bergauer of ÖAW/Austria
- The funding will come from national resources (plus eventually supranational projects)

Future Organisation of Detector R&D - The DRDs



Fully Approved for an initial period of 3 years by CERN Research Board in December 2023

- Gaseous Detectors (DRD1) [ex RD51]
- Liquid Detectors (DRD2)
- Photodetectors & Particle ID (DRD4)
- Calorimetry (DRD6)

Reports at March open DRDC session: https://indico.cern.ch/event/1356910/
Full Proposals in CERN CDS

Fully Approved for an initial period of 3 years by CERN Research Board in June 2024

- Quantum Sensors (DRD5)
- Electronics (DRD7)

Reports at June open DRDC session: https://indico.cern.ch/event/1406007/

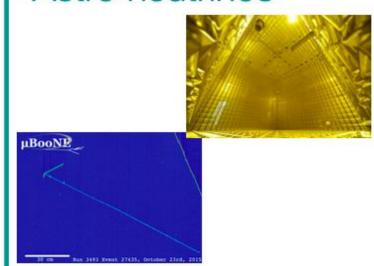
Letter of Intent submitted

Integration (DRD8) Full Proposal to be written by the end of 2024

J.R. Monroe,

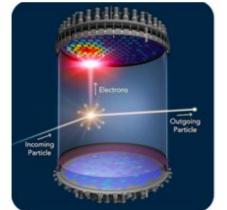
DRDC Meeting,

DRD 2 talk,

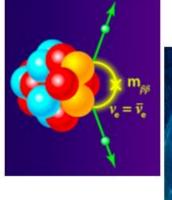

March '24

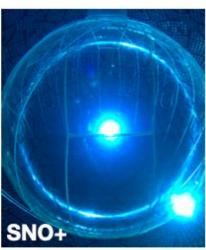
Liquid Detectors - Science Directions

Neutrinos


- Oscillation precision measurements (δ_{CP}, mass ordering, θ₂₃ octant, sterile vs)
- Neutrino interactions (from CEvNS to DIS)
- Astro neutrinos

Dark Matter


Direct detection
 (WIMPs, ...)



Ονββ

 Search for Majorana neutrinos

- 2

6

J.R. Monroe,

DRDC Meeting.

DRD 2 talk,

March '24

Liquid Detectors - Requirements

Neutrinos

- Push Energy
 thresholds down to
 ~1MeV to enhance
 oscillation physics,
 supernovae vs study,
 to enable solar vs ...
- Unambiguous readout

Scalability

Dark Matter

- Push Energy thresholds down to 1 meV/10 eV/1 keV to enable low mass DM/1 GeV DM/ WIMPs.
- Reduce background rates

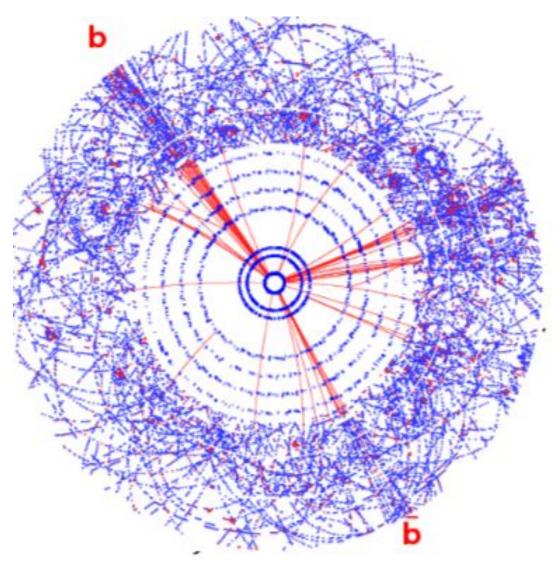
Scalability

Ονββ

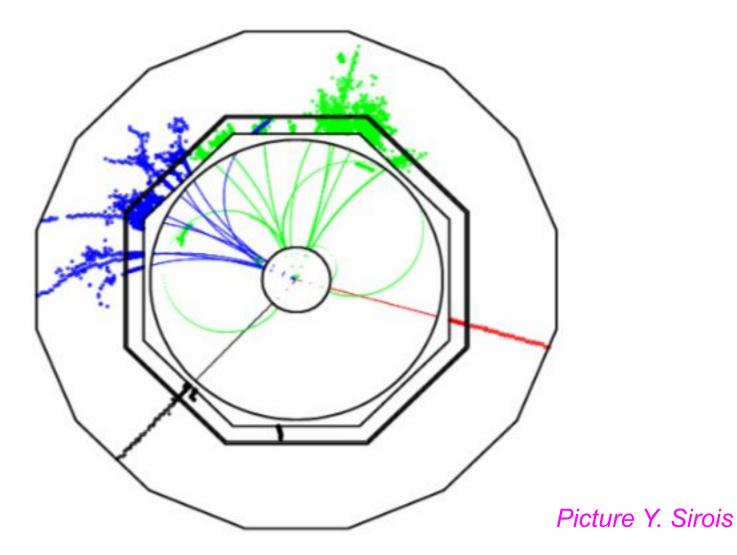
Improve Energy
 Resolution to sub FWHM

 Reduce background rates

Scalability


.

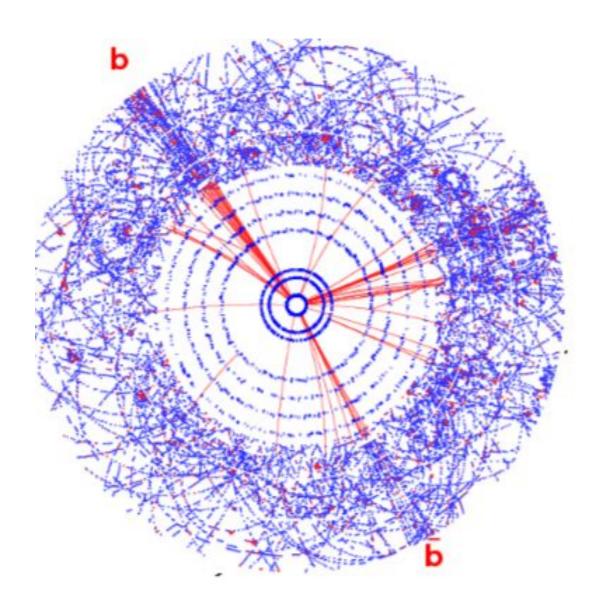
(Rough) Comparison – Hadron collisions ↔ e⁺e⁻ collisions

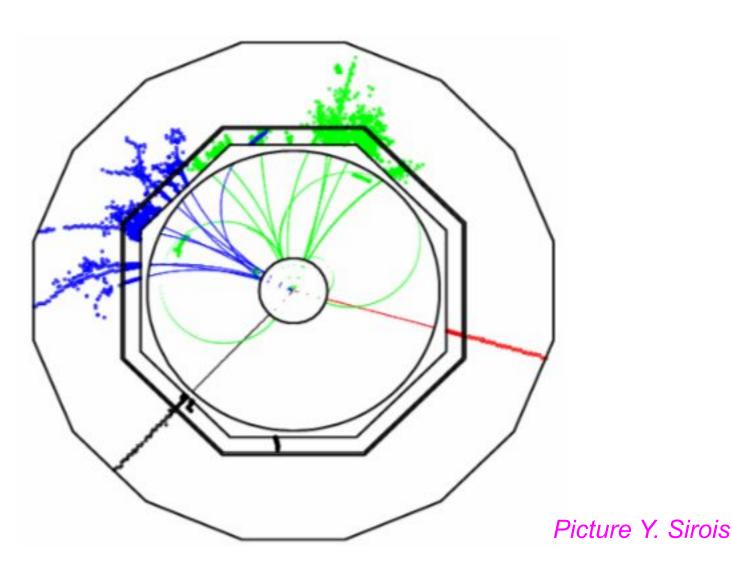


Hadron-hadron collisions e.g. LHC

- Busy events
- Require hardware and software triggers
- High radiation levels

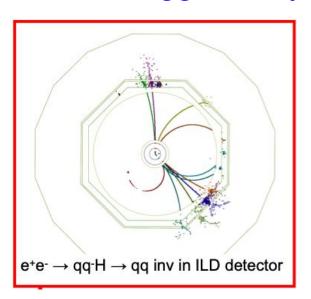
e⁺e⁻-collisions

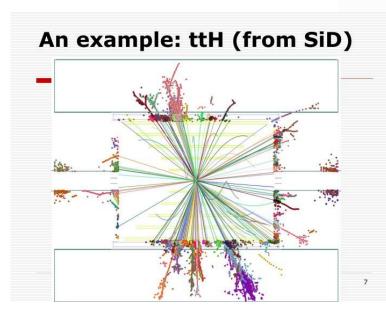

- Clean events
- No trigger
- Full event reconstruction

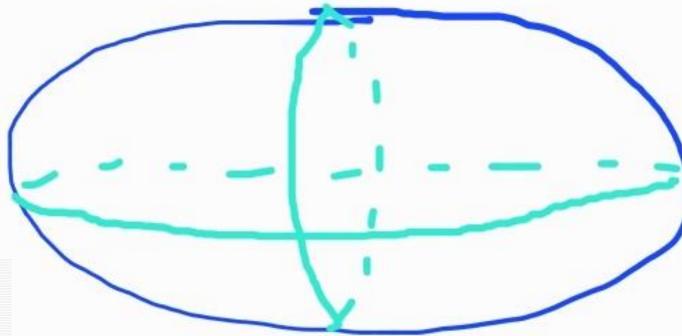

(Rough) Comparison – Hadron collisions ↔ e⁺e⁻ collisions

Hadron-hadron collisions e.g. LHC

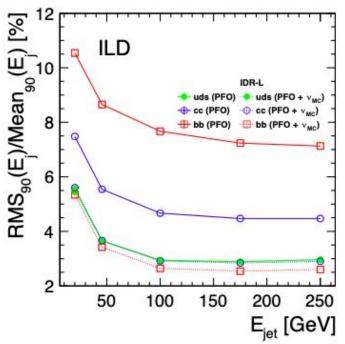
e⁺e⁻-collisions


- EPPSU 2020 named clearly an e+e- Higgs factory as priority after LHC
- Therefore many R&D activities have been targeted into this direction (and sets the priorities for this talk)
 - However, community keeps an eye on future hadron and muon colliders IRN Terascale/GT01 Meeting Oct. 2024

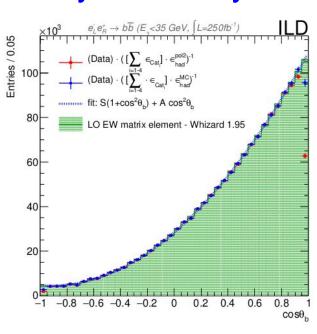

Detector Hermeticity


Invisible Higgs decays

Rich events:

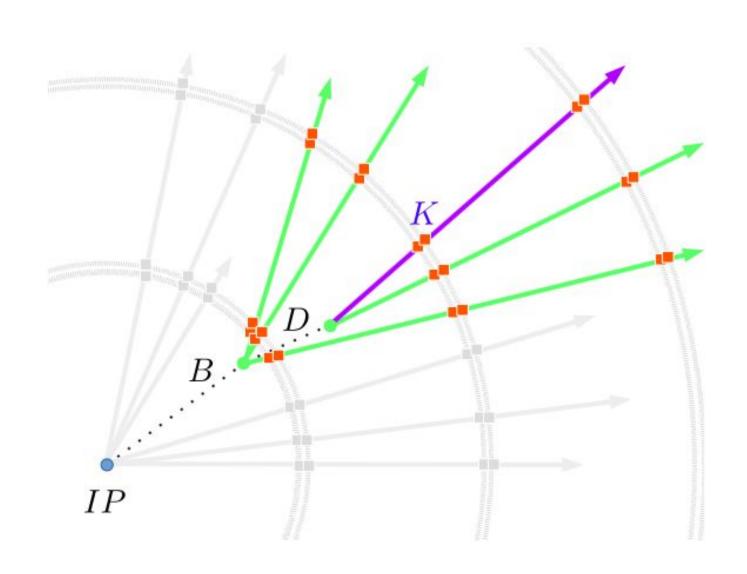


Hermeticity = Acceptance down to the beam pipe and no acceptance holes!



Detector Hermeticity requires is team effort Vertex Detectors, Central Tracking and Calorimeters

Missing Energy


Heavy Quark asymmetries

Vertexing and Tracking

PhD thesis: S. Bilokin A. Irles

- Determination of primary vertex
- Flavor tagging
 - Indispensable for analyses with final state quarks
- Quark charge measurement
 - Important for top quark studies,
 - indispensable for ee->bb, cc, ss, ...
- Control of migrations:
 - Correct measurement of vertex charge
 - Kaon identification by dE/dx (and more)
- Future detectors can base the entire measurements on double tagging and vertex charge
 - LEP/SLC had to include single tags and
 - semi-leptonic events

CMOS Sensors Silicon Tracking

Main asset: µ-circuits (steering, r.o., slow control) integrated on thin sensing substrate → Monolithic & Thin (& Troom)

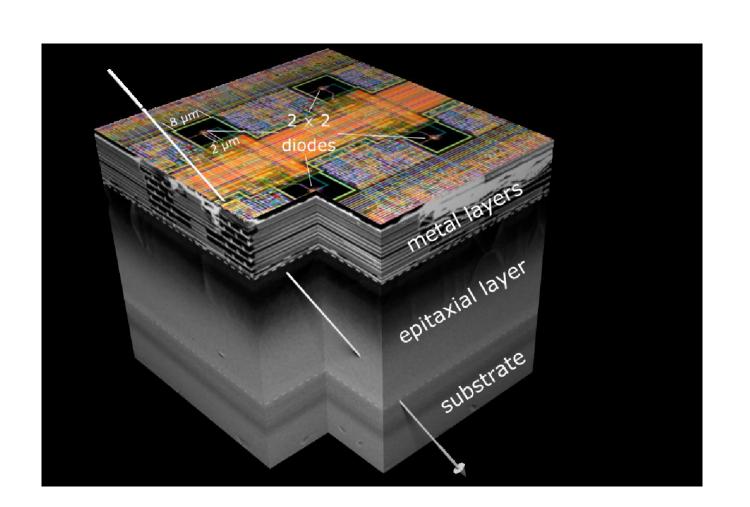
Numerous developments of custom design CMOS Pixel Sensors (CPS) on-going for vertexing and tracking devices foreseen to equip experiments at existing infrastructures (LHC, KEK, PSI, ...) and future colliders (eIC, FAIR, FCCee/hh, CEPC, ILC, C3, ...)

Some R&D for ECAL

Optimisation imposes hierarchising conflicting requirements:

Spatial resol. / Timing / Mat. budget (power) / Rad. Tol. / Hit rate

- Dependence on CMOS process (foundry) characteristics


Frameworks: CERN-EP, DRD, ITS3 (main driver for Higgs

factories: 65 nm techno with **stitched curved sensors**)

3 predominent foundries: TJsc, TPSCo, L Foundry

System Integration is crucial for realistic detector optimisation:

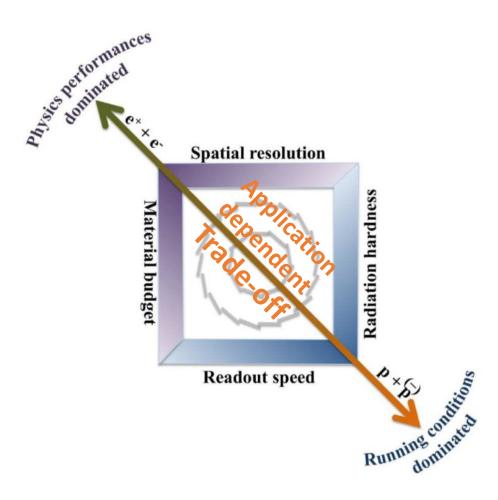
- . Air cooling at which price?
- . Services → impact on FW region ?

Courtesy of Marc Winter

Ambitioned Performances

Spatial and pointing resolution : < 3 μm and Rin ≤ 15 mr

Time stamping:

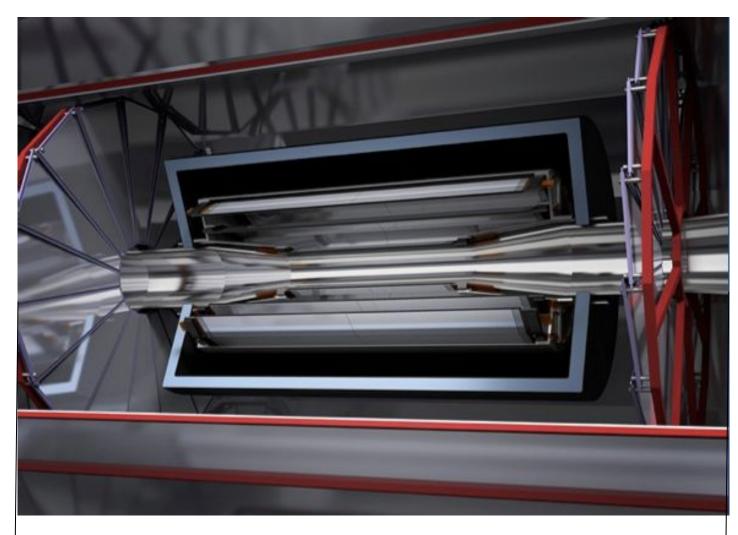

- Z pole running: << 1 μs?
- for $\sqrt{s} > 200 \text{ GeV} : O(1) \text{ µs}$

Material budget / single layer: ≤ 0.15 % Xo

→ no active cooling inside sensitive volume (air flow onl

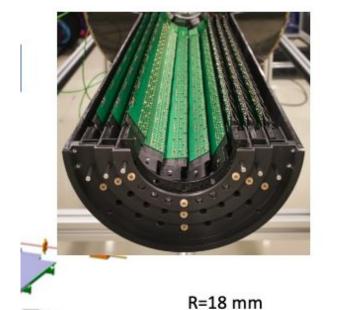
Remarks:

- minimise beam pipe material budget and radius
- exploit at best low radiation levels and backgrounds (as compared to LHC)
- system optimisation should minimise bulk of services (end-caps!)
- Z-pole and H-top operations could involve two different vertex detectors



Courtesy of Marc Winter

Vertex Tracking for Higgs Factories


- Big question: Radius of beam pipe
- Beam Pipe wall

 0.6mm Be
 0.5mm H₂O
 0.6mm Be
 0.005mm Au

 15mm

 Beam line

- Low material budget is overall challenge
 - Major step through ALICE upgrade

ITS2:

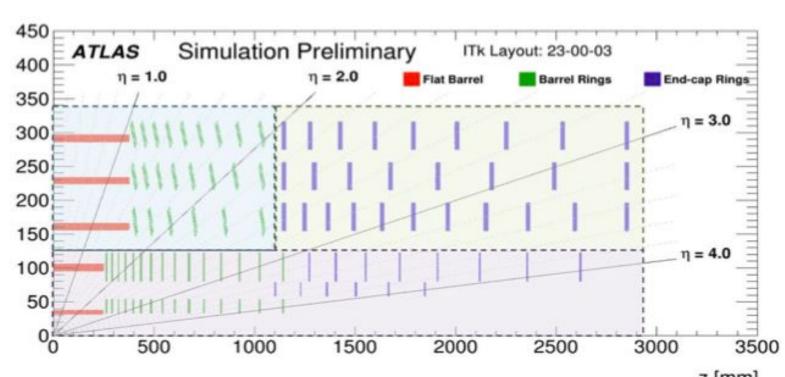
(S.Beolé, iWoRiD 2022)

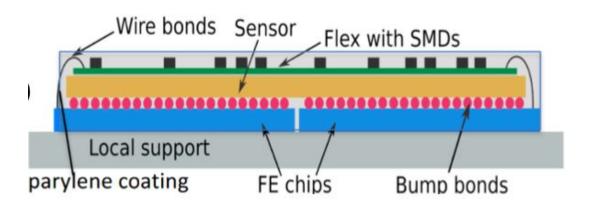
- 7 layers of MAPS
- TJ 180 nm CMOS
- 12.5 Giga pixels
- Pixel size: 27×29 μm²
- Water cooling
- 0.3 % X₀ / inner layer

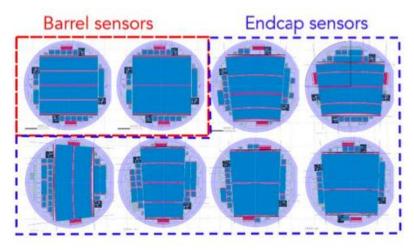
ITS3

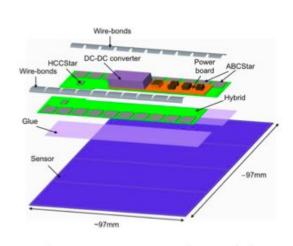
(M. Šuljić, iWoRiD 2023)

- 4 outer layers of ITS2
- 3 new fully cylindrical inner layers
 - Sensor size up to 27×9 cm
 - Thickness 30-40 μm
- No FPCs
- Air cooling in active area
- 0.05 % X₀ / inner layer


Considerable material reduction by application of **bent** layers


Central Tracking With Silicon – Example ATLAS ITK

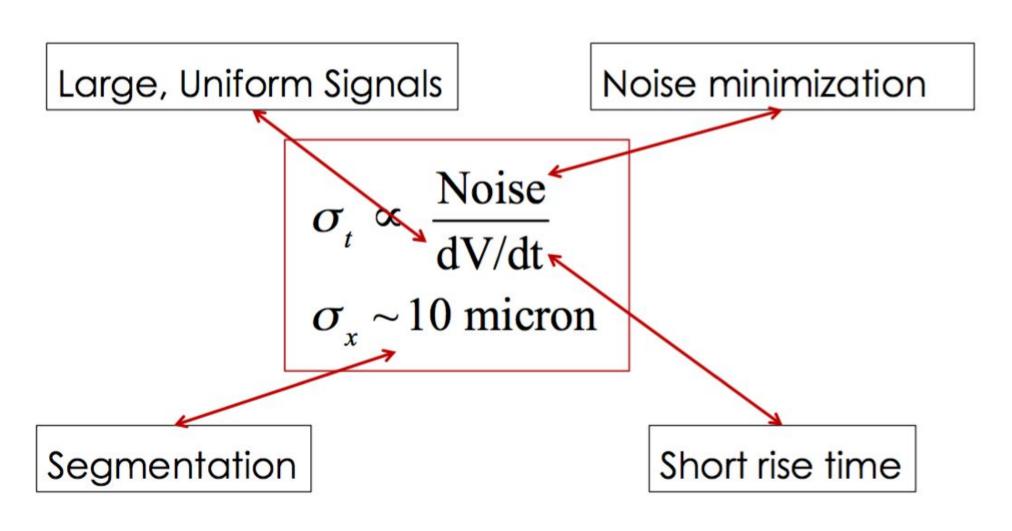

Pixel Detectors

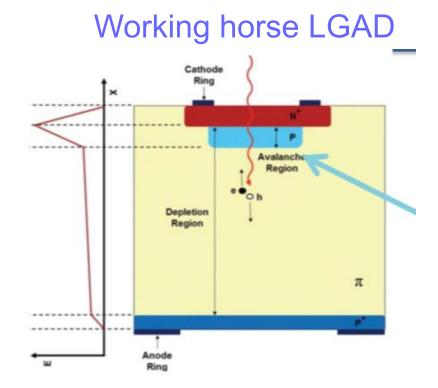


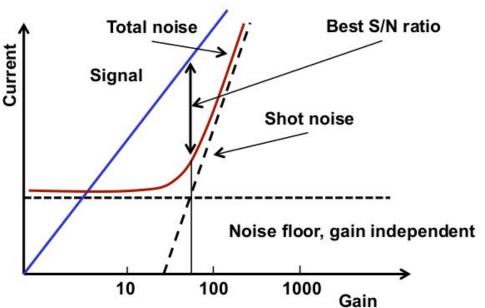
Structure of ITK Pixel Module

Strip Detectors

Short Strip Barrel module

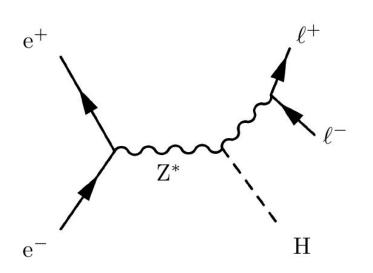

- Silicon tracking yield excellent single point resolution
 - Typically O(few µm)
- Less measurement points than gaseous tracking
- LHC Detectors feature large silicon tracking
 - ... that undergo currently a major upgrade
- Many proposals for future detectors will also feature a large silicon tracking volume

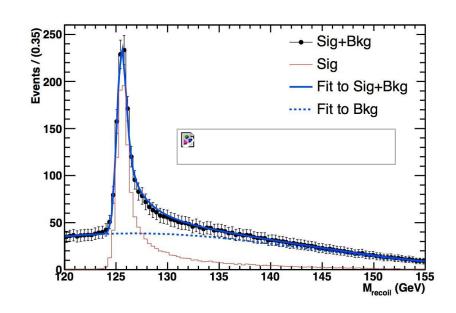

Timing (not only) for Tracking



Pioneered by LHC Experiments, timing detectors may require adaptation for Higgs Factory Experiments

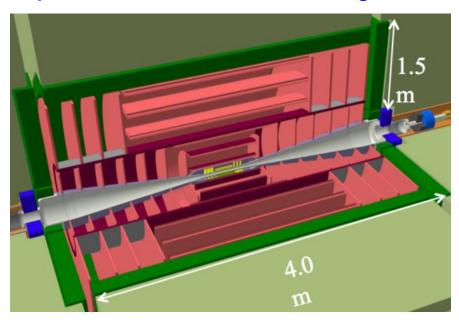
- Better dV/dt by "active" Si diodes ? => Low Gain Avalanche Detectors
 - LGADs applied for ATLAS HGTD and CMS ETD
 - Expect time resolution $\sigma_{t} \sim 30-50 ps$
- Combining LGADs with tracking devices is current major R&D topic
- . => 4D tracking



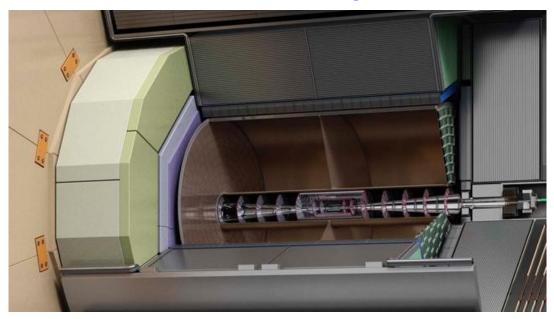


Central Tracking

"Royal" task of central tracking system Precise measurement of charged particles in e.g.

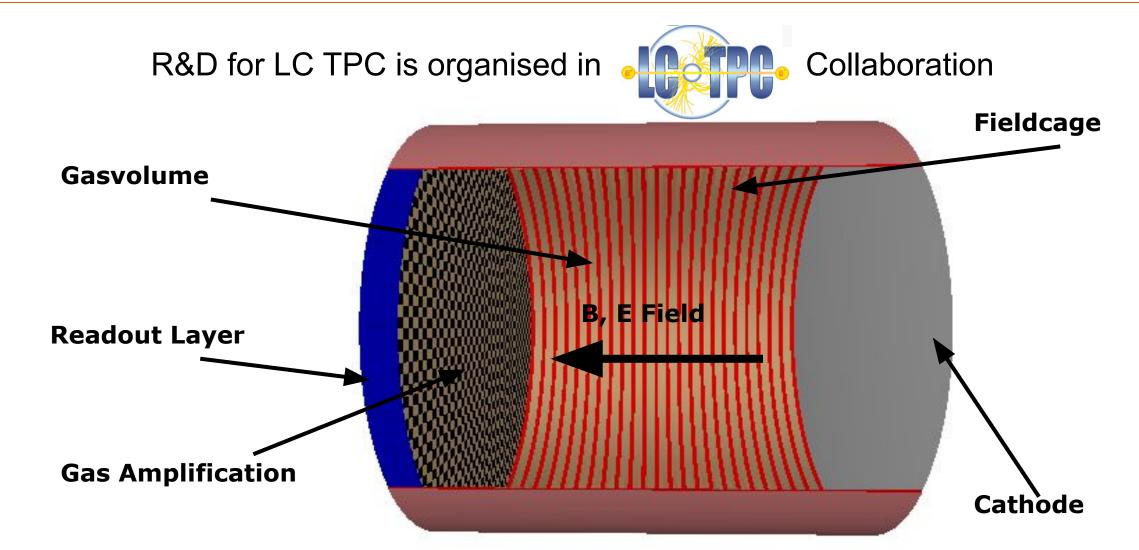


Gluckstern Formula:


$$\frac{\Delta p_t}{p_t^2} = \frac{\sigma_{r\phi}}{0.3 L^2 B} \sqrt{\frac{720}{N+4}}$$

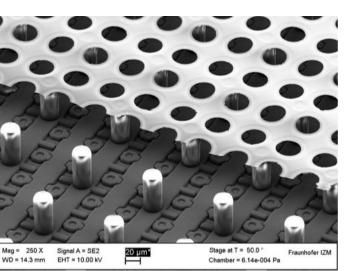
Relates track momentum resolution with single point resolution σ with Number of hits and track length L and magnetic Field B

Option 1: All silicon tracking

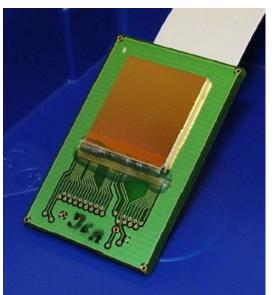

Option 2: Gaseous tracking

Gaseous Tracking Systems at Future Colliders

- Charged particle ionizes Gas
- Electron cloud drifts to Anode (Readout layer)
- Transversal diffusion is largely suppressed since E || B z Coordinate: $z = v_d \cdot t_d$ (vd, td drift velocity and drifttime, respectively
- rφ Coordinate by segmented Readout layer IRN Terascale/GT01 Meeting Oct. 2024



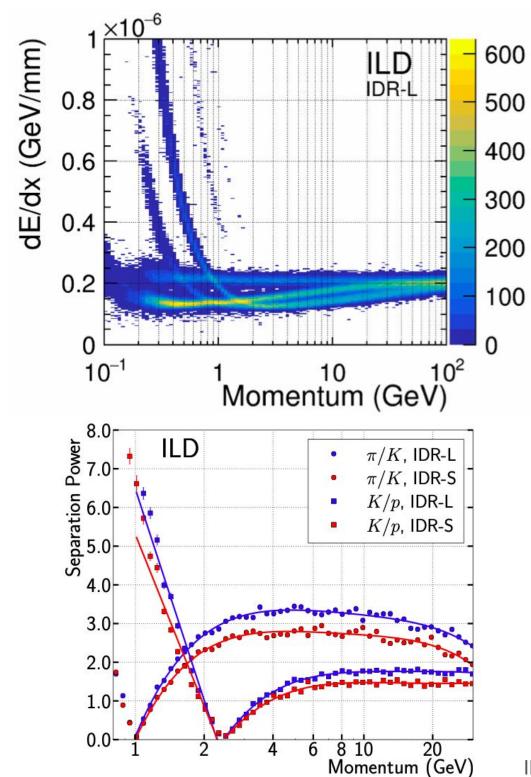
Central Tracking – Gaseous Tracking - TPC



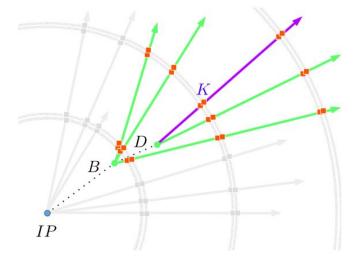
Micropattern Gas Detectors - Pads :

T2K/ND280 (near detector at JPARC neutrino oscillation experiment) started in 2023-24 using a technology envisaged for a pad TPC: resistive Micromegas. This allows developments relevant for a Higgs factory TPC: long term stability, algorithms for dE/dx measurements, gain calibration and charge spreading studies.

• Pixels: Performance studies going on using DESY 2021 test beam data and simulations. dE/dx, dN/dx, resolution, chip alignment, distortions.



• Ion backflow and distortions from space charge (common to all readout options): R&D necessary and in progress for TPC application at circular colliders, especially at the TeraZ. Here the ALICE Pb-Pb data are also useful. This also requires intense beam background simulations.

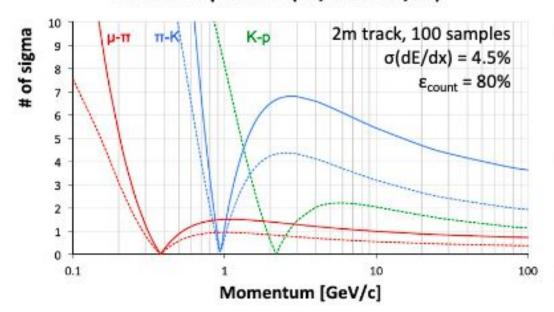


Gaseous Tracking – dE/dx in ILD

- Up to 220 points for dE/dx in ILD
- ILD targets resolution of at least 5% on dE/dx,
- Fine pixels avoid ambiguities
 - => most of the time all 220 Hits are available
- Test beam results are encouraging

Applications of dE/dx:

- Kaon identification in ee->tt, ee->bb, ee->cc, ee->ss
 - •Supplementary to vertex charge measurement for heavy quarks
 - Increases statistics by a factor of two
 - Backbone of ee->ss
- Separation of W->ud and W->cs
- Separation power pi/K 2-3 sigma at momenta above 2 GeV
 - Degradation towards higher momenta


dE/dx → dN/dx – Cluster counting



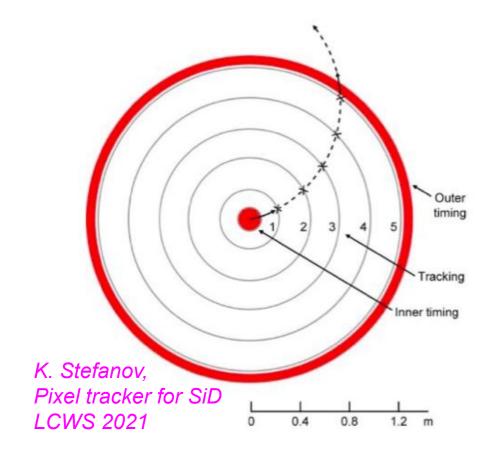
- G. Chiarello et. al, NIM A 936 (2019) 503-504
- G. Cataldi et al. NIM A 386 (1997) 458
- F. Grancagnolo, AIDAinnova kickoff (link) + private communication
- J. Kaminski, "Electronics for cluster counting" RD51 workshop (link)

Particle Separation (dE/dx vs dN/dx)

- IDEA Drift Chamber PID resolution can be considerably improved using cluster counting:
 - Standard truncated mean dE/dx : σ ≃ 4.2%
 - Cluster counting : $\sigma \simeq 2.5\%$
- FEE for cluster counting: till now, single channels solutions available, see e.g.:
 - □ IEEE IWASI 2007 pp. 1-5, □ JINST 12 C07021 (2017), □ NIMA 735 (2014) 169

Further developments (R&D):

- Development of suitable FEE for IDEA and SCTF (INFN, BINP) AIDAinnova Task 7.4.1
 - BW > 1 GHz, noise < 1 mV, gain > 10, power < 10 mW/ch,
- Data reduction (peak finder) and pre-processing at high-rates on FPGA
 - (JINST 12 C07021 (2017)
- o Experimental verification of dN/dx method with e, μ , π , K, p beams (ECFA input)
 - → test beams at CERN (H8), He-based mixtures



In absence of gaseous tracking

Two options (not mutually exclusive)

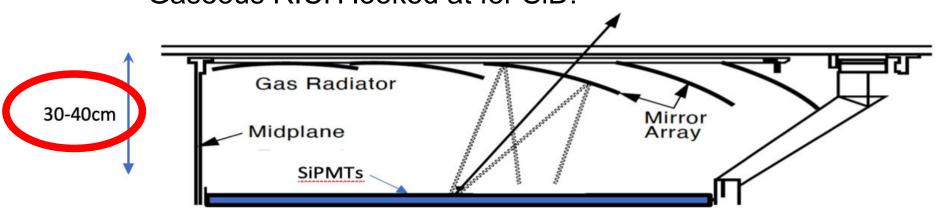
ToF System

(With two closed eyes) ToF systems might work up to 10 GeV

Cerenkov Detector

Three options:

6-7 GeV/c


à la J. Vavra

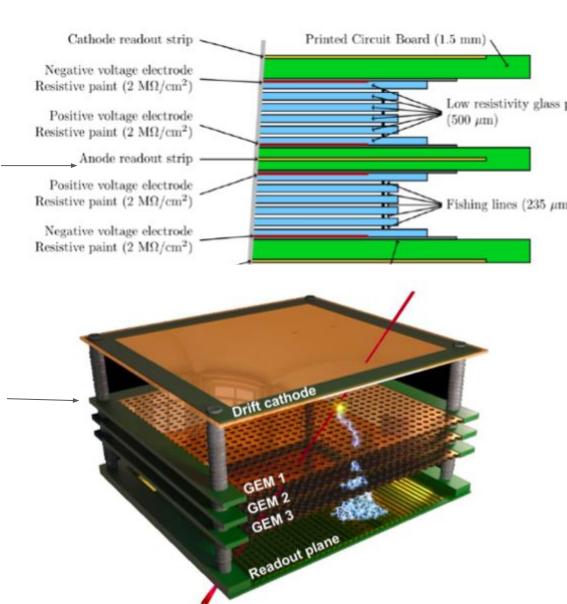
. DIRC:

Focusing Aerogel RICH: 9-10 GeV/c

Gaseous RICH: 10-30 GeV/c

Gaseous RICH looked at for SiD:

- ToF and Cherenkov are options for PiD systems
- Cherenkov most likely needed to go to high momenta
- Both lead to "compressed" tracking systems
 - Ongoing R&D to minimise this compression

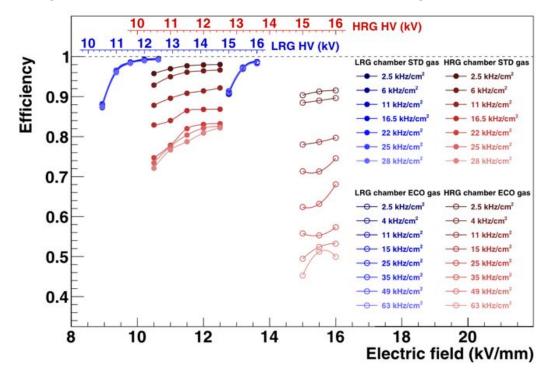

(Large scale) gas detectors

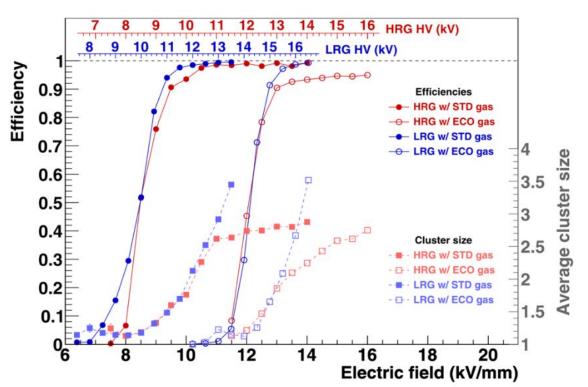
Example CMS Muon System https://cms.cern/detector/det

ecting moudins Drift Tubes (DTs) Resistive Plate Chambers (RPCs) Cathode Strip Chambers (CSCs) Gas Electron Multipliers (GEMs)

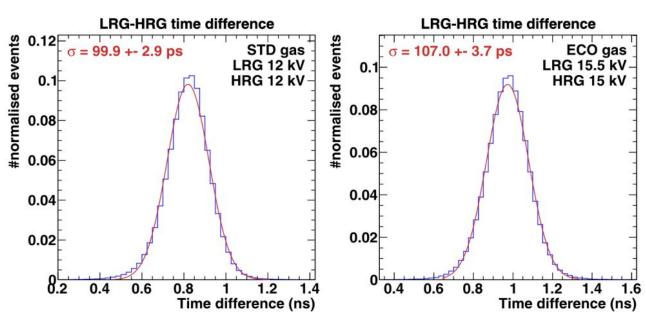
Trend: Multi Layer Chambers

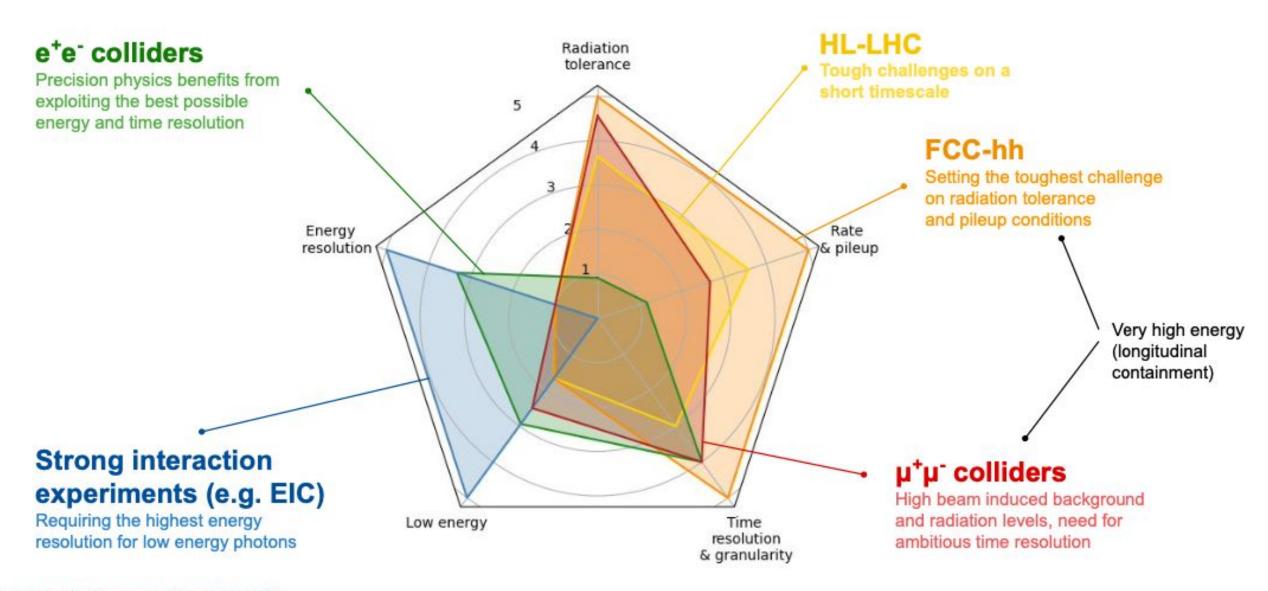
Gas chambers are also options for calorimetry


MRPCs for fast timing


MRPC developments for fast timing (D7.2):

- MRPC with 10 layers and 230μm gaps.
- Glass sheets with low-resistivity (LRG $\sim 10^9 \Omega$ cm), and high-resistivity glass (HRG $^{\sim}10^{12}~\Omega$ cm) used.
- Standard (98% $C_2H_2F_4$ 2% SF_6 GWP 2040) and ECO (100% HFO1234ze GWP 6) gas mixtures were used.
- Good performance of LRG, even with ECO gas, but at much higher voltage (+4kV).


Rate performance with beam spot of 4 cm²


Time resolutions measure: ~100ps

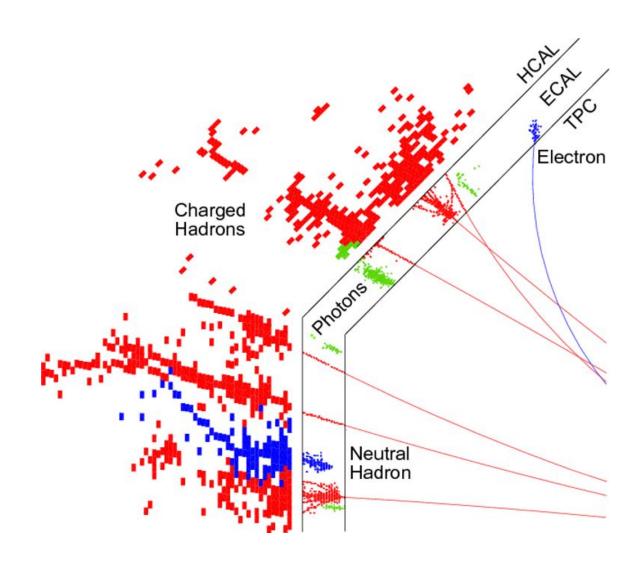
Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

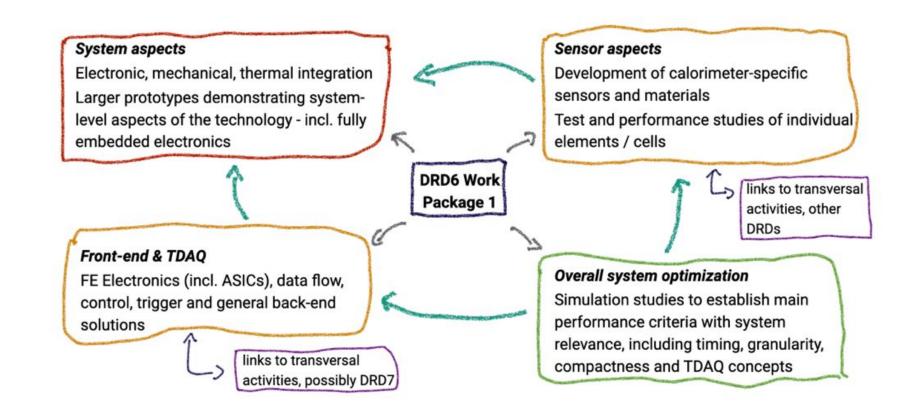
Jet energy resolution – Different approaches

High pixelisation to exploit tracking as much as possible

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{elm.}^2 + \sigma_{Confusion}^2}$$


Optimise for hadronic energy resolution

Optimise for electromagnetic energy resolution



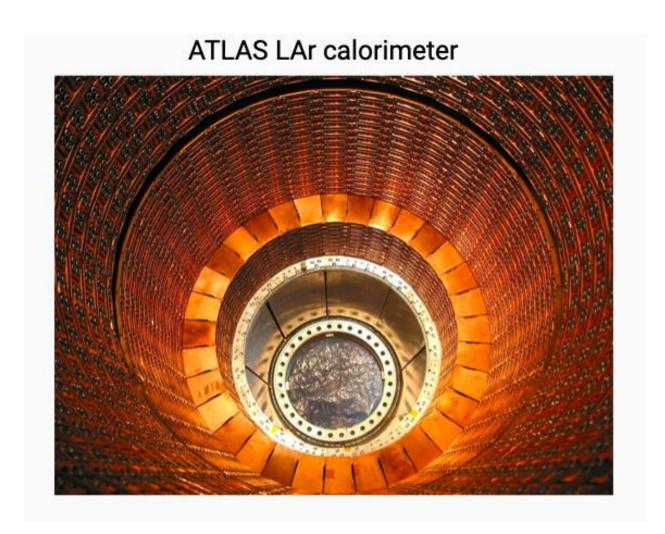
Imaging calorimeters

Imaging calorimeters provide the high separation power for **Particle Flow**

Challenges:

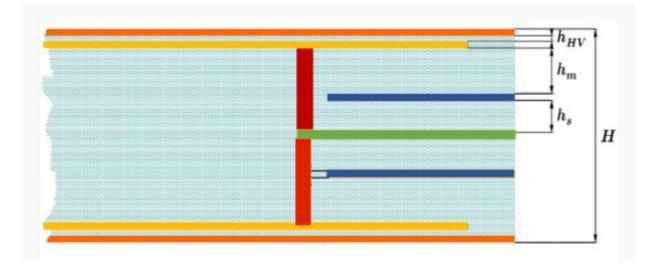
- High pixelisation, 4pi hermetic -> little room for services
 - Detector integration plays a crucial role

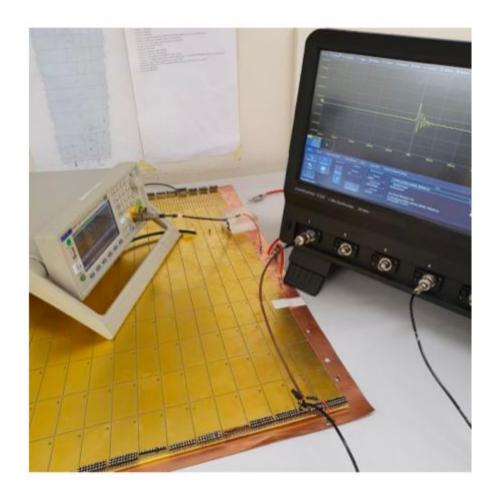
New strategic R&D issues


- Detector module integration
- Timing
- High rate e+e- collider (such as FCCee)

Future Noble Gas Calorimeters

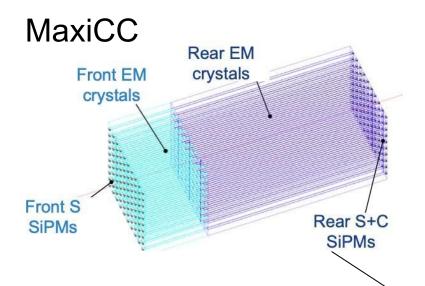
- LAr Calorimetry is proven technology since a few decades ATLAS, H1, DO, NA31
- Challenge is to make the technology "fit" for future hadron and lepton machines
- Design is driven by particle flow
 - ATLAS Jet-Energy resolution based on PFA
 - ~24% at 20 GeV and 6% at 300 GeV
- => Increase of granularity
 - Goal: Factor ~10 w.r.t. ATLAS LAr Calorimeter
 - . 220 kCells -> ~2 MCells




Future Noble Gas Calorimeters – How to increase the granularity

- Development of a multilayer PCB
 - HV Layer on both sides
 - Readout layer on both sides
 - Connected to signal trace

- One signal trace is economical solution to reduce signal traces
- Pick-up of signal from both sides increases
 S/N


Challenges:

- Control number of signal traces
- Big number of capacitances => Noise
 - Goal is 300 keV Noise for 200 pF cell (S/N > 5)
 - FCCee allows for higher integration times
 - Cold electronics?

Optical calorimeters



- More than e.g. imaging calorimeters optical calorimeters put emphasis on the electromagnetic energy resolution
 - (Liquid Noble) interpolates a bit between these two cases
- Elm. resolutions down to 1-2%/√E are envisaged
 - Advantegeous for Higgs Factory, indispensable for Heavy Flavour

Table 2: Overview of R&D activities on optical calorimeter concepts.

Name	Calorimeter type	Application	Scintillator/WLS	Photodetector
HGCCAL	EM / Homogeneous	e ⁺ e ⁻ collider	BGO, LYSO	SiPMs
MAXICC	EM / Homogeneous	e ⁺ e ⁻ collider	PWO, BGO, BSO	SiPMs
CRILIN	EM / Quasi-Homog.	$\mu^+\mu^-$ collider	PbF_2 , PWO-UF	SiPMs
GRAINITA	EM / Quasi-Homog.	e ⁺ e ⁻ collider	$ZnWO_4$, BGO	SiPMs
SPACAL	EM / Sampling	e ⁺ e ⁻ /hh collider	GAGG, organic	MCD-PMTs, SiPMs
RADICAL	EM / Sampling	hh collider	LYSO, LuAG	SiPMs
DRCAL	EM+HAD / Sampling	e ⁺ e ⁻ collider	PMMA, plastic	SiPMs, MCP
TILECAL	HAD / Sampling	e ⁺ e ⁻ /hh collider	PEN, PET	SiPMs

SpaCal

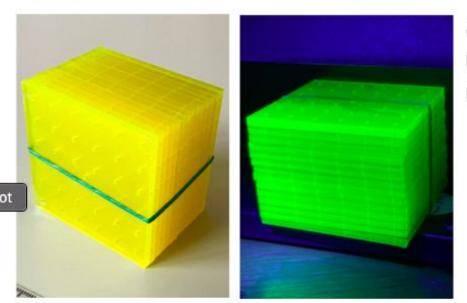
GRAINITA

Crytur	Crytur	Crytur	
YAG	YÁG	YÁG	
ILM	Fomos	C&A	1
GAGG	GAGG	GFAG	ı
Fomos	Fomos	Crytur	
GAGG	GAGG	YAG	k

- Main challenges
 - Find the good optical material
 - Find the adequate photosensor
 - Move from table top to system
 - First project to fully make this step is SpaCal (LHCb)

Novel optical materials

- Radiation hard optical materials with ultrafast timing response are required for new detectors in HEP, nuclear medicine and industry
- A time resolution below 30 ps or even in the sub ps domain requires a better understanding of the fast signal production mechanisms in detection materials
- Innovative test suites required for the combination of fast timing and radiation tolerance will be developed for the characterisation and classification of materials

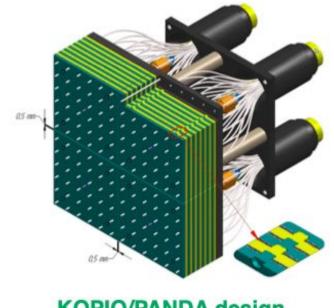

 Scalable and cost effective production techniques for the novel materials have to be explored together with the industrial partners

(Nano) Materials for optical calorimeters

V. Sola AIDAinnova Meeting Valencia

Nanomaterial composites (NCs)

Semiconductor nanostructures can be used as sensitizers/emitters for ultrafast, robust scintillators:

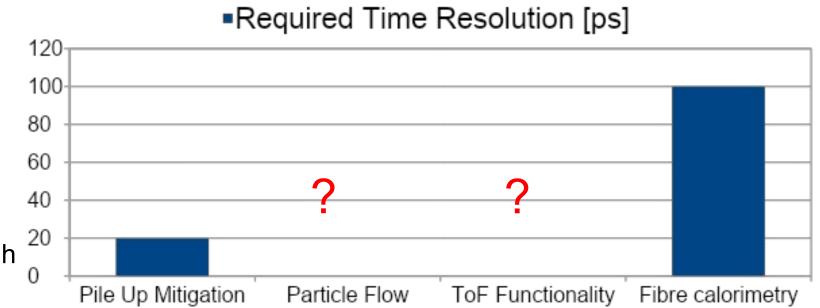

- Perovskite (ABX₃) or chalcogenide (oxide, sulfide) nanocrystals
- Cast with polymer or glass matrix
- Decay times down to O(100 ps)
- Radiation hard to O(1 MGy)

Despite promise, applications in HEP have received little attention to date

No attempt yet to build a real calorimeter with NC scintillator and test it with high-energy beams

Shashlyk design naturally ideal as a test platform:

- Easy to construct a shashlyk calorimeter with very fine sampling
- Primary scintillator and WLS materials required: both can be optimized using NC technology


KOPIO/PANDA design Fine-sampling shashlyk R&D on material has Overlap with DRD 5

Timing?

- Timing is a wide field
- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?
- For which purpose ?
 - Mitigation of pile-up (basically all high rate experiments)
 - •Support of PFA unchartered territory
 - Calorimeters with ToF functionality in first layers?
 - •Might be needed if no other PiD detectors are available (rate, technology or space requirements)
 - •In this case 20ps (at MIP level) would be maybe not enough
 - Longitudinally unsegmented fibre calorimeters

- A topic on which calorimetry has to make up its mind
 - •Remember also that time resolution comes at a price -> High(er) power consumption and (maybe) higher noise levels

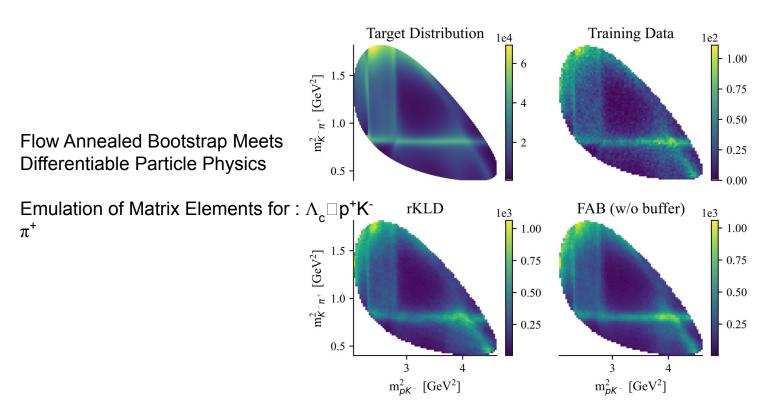
Calorimetry- Match Irradiation/Beam test Facilities Detector Needs

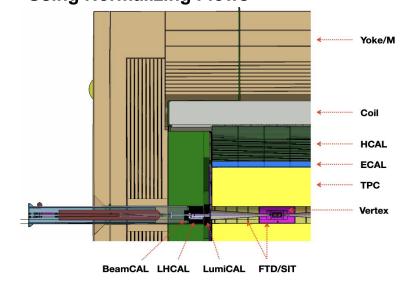
	Energy	Irradiation
Higgs Factory CMS energy 90-1 TeV Radiation <= 10 ¹⁴ n _{eq/} cm ²		
HL-LHC CMS energy 14 TeV (shared by partons) Radiation ~10 ¹⁶ n _{eq} /cm ²		
Muon Collider CMS energy 3-10 TeV Radiation ~HL-LHC	X	
Future Hadron Collider CMS energy 100 TeV (shared by partons) Radiation up to ~10 ¹⁸ n _{eq} /cm ²	X	X

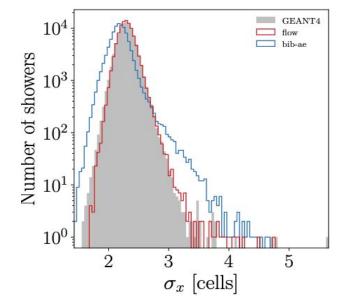
Message:

Beam test infrastructure is of vital need for detector R&D

High quality detectors at future machines need sustained support of beam test facilities by lab managements

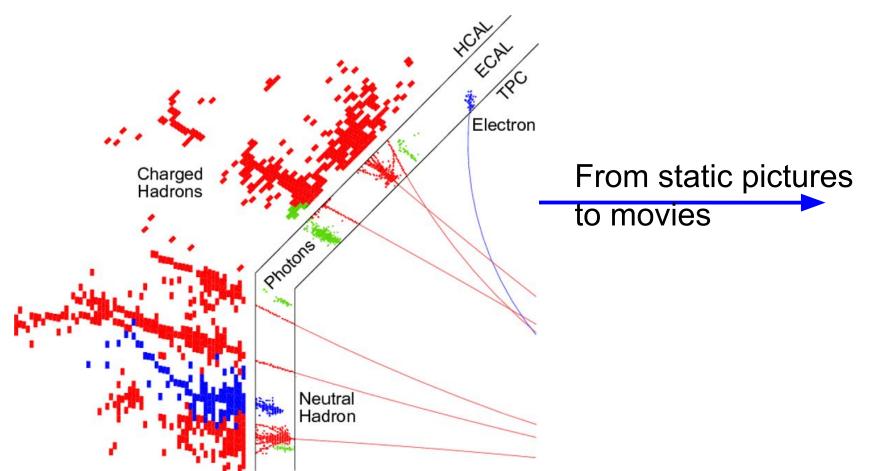

This costs money!

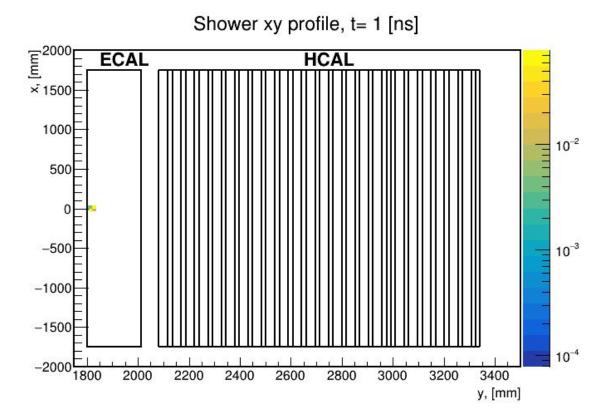

Simulation



- Simulation needs ~ typically 50% of computation need
- Detector simulation (Geant4) but also event generation $N^{(p)}LO$
- More data, precision physics need for even more simulation
- Generative models to emulate event generator and detector simulation
- Physics simulator are still needed (keep them alive) to provide training data
- Several orders of magnitude speed-up, but accuracy?

<u>Convolutional L2Flows</u>: Generating Accurate Showers in Highly Granular Calorimeters Using Normalizing Flows





Event Reconstruction

Y. Padniuk, Master student Technical University of Kiyv

- Raw reconstruction (raw signals to energy deposition): NN on FPGA (hls4ml), GPU
- Al in pattern recognition with timing as additional variable
- Jet tagging, particle identification
- Event identification
- Data Quality Monitoring

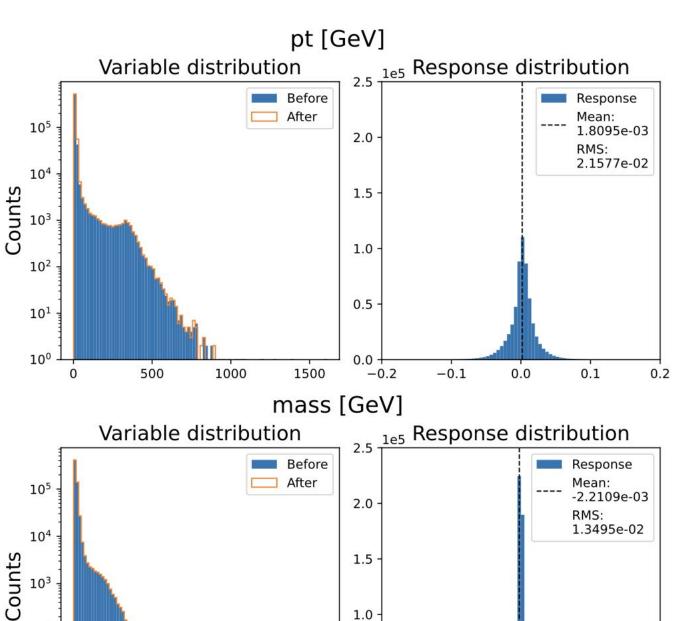
David Rousseau + R.P.

Experiment design

- LHC experiments designed in the nineties, will take data well into thirties
- Al used more and more in the full pipeline data taking, reconstruction, simulation
- Can AI be used to design experiment?
- Key ingredient: auto-differentiation, to obtain the gradients of the figure-of-merits wrt experiment design parameter
- Key difficulty (being overcome) inherent stochasticity of HEP detectors
- Active development, see in particular <u>Mode</u> workshops

Fourth MODE Workshop on Differentiable Programming for Experiment Design

23–25 Sept 2024 Valencia (Spain) Europe/Paris timezone


nter your search term

- Persistent Dataset size challenge : Al can also be used for "intelligent" data compressing (allowing for losses).
- (g)zip : no loss compression
- mp3 : allow for losses that are inaudible to the human hear
- lossy compression for example Baler: Auto-encoder-based compression of scientific datasets
- To be tuned for almost zero impact on downstream physics analysis (which might not exist yet)

1.0

0.5

-0.2

-0.1

0.0

300

200

 10^{2}

 10^{1}

10°

100

0.2

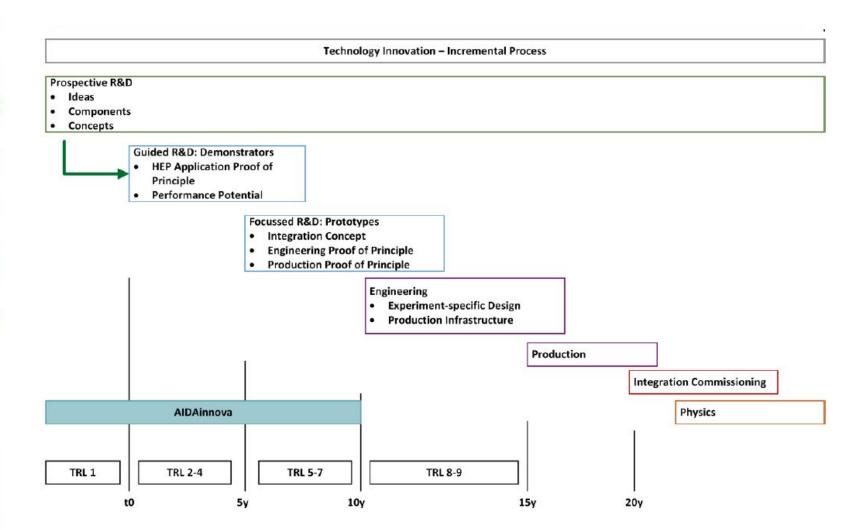
0.1

Summary and outlook

- EPPSU 2020 is about to be implemented
 - R&D needs and objectives have been summarised in the ECFA Detector Roadmap
 - The execution of the R&D programme will be (mainly) organised within DRDs
 - CERN Collaborations with worldwide participation
 - Goal is to achieve sustained funding for Detector R&D
- An incomplete) overview on the concrete implementation has been given in this talk
- Current focus is on Higgs factories
 - Benefit from HL-LHC upgrades (e.g. vertex detectors and ALICE ITS3)
 - But HL-LHC LS4 in view (e.g. LHCb SpaCal)
 - Should also mention CMS-HGCAL for granular calorimeters
 - Integrate engineering from the beginning in the R&D cycles
- Next years will see the full implementation of timing in many types of detectors
- Novel materials (Quantum Dots) will enter the game
- Al will play an ever increasing role
 - Simulation, reconstruction and even detector design
- Not covered but input for discussion
 - Instrumentation and computing should offer attractive career paths for ECR
 - Personal remark on AI:
 - It's really fascinating but have to be careful to form physicists and not "machine learners"

Backup

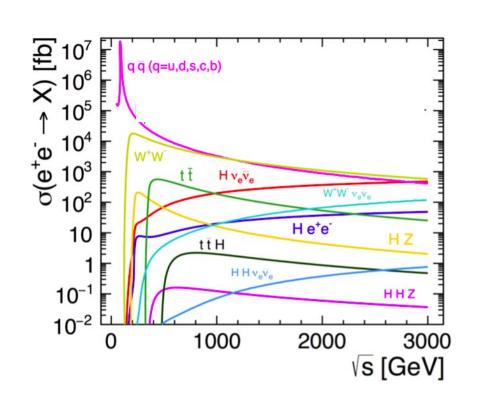
Categories of R&D

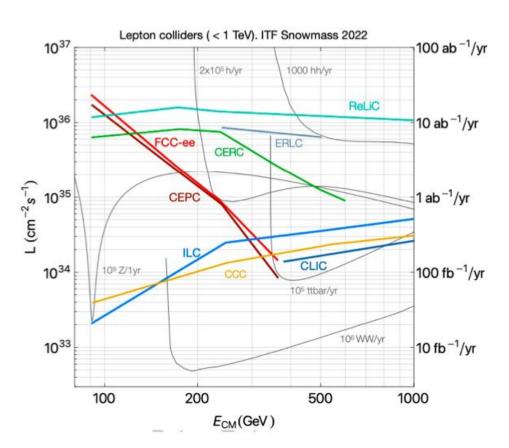

Strategic R&D via DRD Collaborations
 (long-term strategic R&D lines)
 (address the high-priority items defined in the Roadmap via the DRDTs)

Experiment-specific R&D
 (with very well defined detector specifications)
 (funded outside of DRD programme, via experiments, usually not yet covered within the projected budgets for the final deliverables)

3. "Blue-sky" R&D

(competitive, short-term responsive grants, nationally organised)

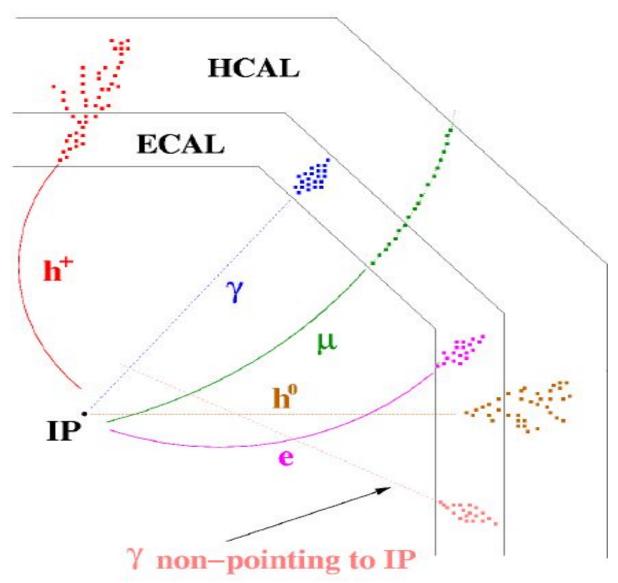

Transitions Blue-sky → Strategic → Specific expected Cross-fertilisation desired



Future direction of R&D - Impact of event rates

High energy e+e- colliders:

- Physics rate is governed by strong variation
- of cross section and instantaneous luminosity
- Ranges from 100 kHz at Z-Pole (FCC-ee)
- to few Hz above Z-Pole
- (Extreme) rates at pole may require other
- solutions than rates above pole


- Event and data rates have to looked at differentially
 - In terms of running scenarios and differential cross sections
 - Optimisation is more challenging for collider with strongly varying event rates
 - Z-pole running must not compromise precision Higgs physics

Particle Flow Detector Layout

- Jet energy measurement by measurement of individual particles
- Maximal exploitation of precise tracking measurement
 - Large radius and length
 - to separate the particles
 - Large magnetic field
 - to sweep out charged tracks
 - "no" material in front of calorimeters
 - stay inside coil (the puristic viewpoint)
 - see later discussion
 - Minimize shower overlap
 - Small Molière radius of calorimeters
 - high granularity of calorimeters
 - to separate overlapping showers

Gaseous Tracking Systems at future colliders

Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
e+e- Collider Tracking + dE/dx	MM, GEM (pads) InGrid (pixels)	Total area: ~ 20 m2 Single unit detect: ~ 400 cm2 (pads) ~ 130 cm² (pixels)	Max. rate: < 1 kHz Spatial res.: <150µm Time res.: ~ 15 ns dE/dx: 5 %	Si + TPC Momentum resolution : dp/p < 9*10-5 1/GeV Power-pulsing
e+e- Collider Tracking + dE/dx	MM, GEM (pads) InGrid (pixels)	Total area: ~ 2x10 m2 Single unit detect: up to 0.04 m2	Max.rate:>100 kHz/cm2 Spatial res.: ~100μm Time res.: ~ 100 ns dE/dx: <5%	Higgs runZ pole runContinues readoutLow IBF and dE/dx
e+e- Collider Tracking/ Triggering	He based Drift Chamber	Total volume: 50 m3 Single unit detect: (12 m2 X 4 m)	Max. rate: < 25 kHz/cm2 Spatial res.: <100 μm Time res.: 1 ns Rad. Hard.: NA	Particle sepration with cluster counting at 2% level
e+e- Collider Main Tracker	Drift Chamber	Total volume: ~ 3.6 m3	Max. rate: 1 kHz/cm2 Spatial res.: ~100 μm Time res.: ~ 100 ns Rad. Hard.: ~ 1 C/cm	
e+e- Collider Inner Tracker	Inner Tracker / (cylindrical µRWELL, or TPC / MPDG read.	Total area: ~ 2 - 4 m2 Single unit detect: 0.5 m2	Max. rate: $50-100 \text{ kHz/cm2}$ Spatial res.: $\sim <100 \mu\text{m}$ Time res.: $\sim 5-10 \text{ ns}$ Rad. Hard.: $\sim 0.1-1 \text{ C/cm2}$	Challenging mechanics & mat. budget < 1% X0
Electron-Ion Collider Tracking	Barrel: cylindrical MM, μRWELL Endcap: GEM, MM, μRWELL	Total area: ~ 25 m2	Luminosity (e-p): 1033 Spatial res.: ~ 50- 100 um Max. rate: ~ kHz/cm2	Barrel technical challenges: low mass, large area Endcap: moderate technical challenges
	e+e- Collider Tracking + dE/dx e+e- Collider Tracking + dE/dx e+e- Collider Tracking/ Triggering e+e- Collider Main Tracker e+e- Collider Inner Tracker	Domain Technology e+e- Collider Tracking + dE/dx MM, GEM (pads) InGrid (pixels) e+e- Collider Tracking + dE/dx MM, GEM (pads) InGrid (pixels) e+e- Collider Tracking/ Triggering He based Drift Chamber e+e- Collider Main Tracker Drift Chamber e+e- Collider Inner Tracker Inner Tracker / (cylindrical μRWELL, or TPC / MPDG read. Electron-Ion Collider Tracking Barrel: cylindrical MM, μRWELL Endcap: GEM, MM, μRWELL Endcap: GEM, MM, μRWELL	Domain Technology Single module size e+e- Collider Tracking + dE/dx MM, GEM (pads) InGrid (pixels) Total area: ~ 20 m2 e+e- Collider Tracking + dE/dx MM, GEM (pads) InGrid (pixels) Total area: ~ 2x10 m2 e+e- Collider Tracking/ Triggering He based Drift Chamber Total volume: 50 m3 Single unit detect: (12 m2 X 4 m) Single unit detect: (12 m2 X 4 m) e+e- Collider Main Tracker Drift Chamber Total volume: ~ 3.6 m3 e+e- Collider Inner Tracker / (cylindrical μRWELL, or TPC / MPDG read. Total area: ~ 2 - 4 m2 Single unit detect: 0.5 m2 Single unit detect: 0.5 m2 Electron-Ion Collider Tracking Barrel: cylindrical MM, μRWELL Total area: ~ 25 m2 Electron-Ion Collider Tracking Endcap: GEM, MM, Total area: ~ 25 m2	Domain Technology Single module size Performance e+e- Collider Tracking + dE/dx MM, GEM (pads) InGrid (pixels) Total area: ~ 20 m2 Single unit detect: ~ 400 cm2 (pads) ~ 130 cm² (pixels) Max. rate: < 1 kHz Spatial res.: < 150 μm Time res.: ~ 15 ns dE/dx: 5 %

CMOS Sensors in use or development

Name	Expt	Sub-syst	Area	Δ Pos., Time	Power (fid.)	Technology	Comment
ALPIDE	ALICE-ITS2	Vx & In. Trkr	10 m²	5 μm, ≤ 10 μs	≤ 50 mW/cm²	TJsc 180 nm EPI	In operation
MOSAIX	ALICE-ITS3	Vx only	0.12 m ²	5 μm, 2-10 μs	\leq 40 mW/cm ² ?	TPSco 65 nm EPI	Wafer scale CPS
FASTPIX	\rightarrow HL-LHC	Demonstr.		≥ 1 µm, ≤ 100 ps	+++	TJsc 180 nm EPI	Timing & Rad. Tol.
MonoPix	\rightarrow ATLAS	ITk	few m²	< 10 µm, ≤ 20 ns	> 0.5 W/cm ²	TJsc 180 nm EPI	Not retained
CACTUS	FCC, eIC,	Timing det.	few m ²	< 100 ps	< 300 mW/cm ²	LF 150 nm	Proto., 1 mm² pixels
MALTA	HL-LHC,	Fast det.	few m²	36x40 μm², 25 ns	> 100 mW/cm ²	TJsc 180 nm EPI	512x512 pixels
MIMOSIS	CBM/FAIR	Vx & In. Trkr	0.16 m ²	5 μm, 5 μs	< 100 mW/cm ²	TJsc 180 nm EPI	Fixed target HI expt
TaichuPix	CEPC	Vx & In. Trkr		≤ 5 μm	90-160 mW/cm ²	TJsc 180 nm EPI	8x8 μm² n-well
NAPA	SiD/C3	Trkr, (calo.)		7μm pitch, O(ns)	20 mW/cm ²	TPSCo 65 nm EPI	Target values
ARCADIA	IDEA/FCCee	Vx & In. Trkr		10-50 μm		LF 110 nm	Working horse
CLICpix	CLICdp	Vx & In. Trkr		25 μm pitch, 10 ns		TPSCo 65 nm EPI	Follows TimePix
OBELIX	Belle-II	Vx (7 layers)	O(1) m ²	≤ 10 µm, ≤ 100 ns	≈ 200 mW/cm ²	TJsc 180 nm EPI	Follows MonoPix
MuPix	Mu3e expt	Vx & Trkr		≤ 30 µm, ≤ 20 ns	≤ 350 mW/cm ²	HV TJsc 180 nm	Fixed target expt

Courtesy of Marc Winter

A TPC at FCCee?

- Count number of primary ions (that stay in TPC for long time, ~0.44s)
- Main source of background: Beamstrahlung many low energy e+e- pairs due to quadropole moment of beam => focusing effect
- Per bunch crossing more for more (more focusses) Linear Collider, here ILC
- Accumulation due to high repetition frequency at circular colliders

			FCCee-91	FCCee-240	ILC-250
model	B-field	MDI	thousand	ions / bunch o	crossing
ILD_15_v02	3.5 (uniform)	ILC	6.5	14	960
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9	15	4700
ILD_15_v03	3.5 (map)	ILC	5.7	14	1100
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6	3.7	450
ILD_15_v11	2.0 (uniform)	FCCee	390	1000	110000

• MDI for FCC increase background significantly compared to MDI for ILC