QCD physics at the Future Circular Collider

EU Particle Physics Strategy Update 1st meeting of SM and BSM WG (GT1) (Virtual), 4th Oct. 2024

David d'Enterria CERN

Particle physics at the end of 2024

- Apart from the Higgs discovery, all fundamental questions that motivated the LHC still remain open! DM, matter-antimatter asymm., EW-Planck hierarchy, v masses, strong CP problem, DE, cosmol.const, inflation,...
- World priority is a high-precision Higgs factory to precisely probe the crucial scalar sector of the SM.
- FCC-ee Feasibility Study:
 - Model-indep. Higgs couplings down to 0.1%: Indirect BSM up to $\Lambda \approx 7$ (70) TeV (+EW observ.)
 - Higgs Yukawa couplings to
 lightest fermions (u,d,s,e,ν?,DM?)
 Flavor-violating H → qq' decays?
- Followed by energy-frontier hadron collider (FCC-hh): H selfcoupling + direct BSM searches up to $\Lambda \approx 100$ TeV

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

 the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

CERN Future Circular Collider (FCC)

- 90.7 km tunnel
- 4 experimental sites
- Deepest shaft 400 m, average 240 m

Two stages

- FCC-ee (~15 years)
- FCC-hh (>20 years)

Exploit world-class international community, facilities, and sci-tech *savoir-faire* accumulated at CERN over the last 70 years!

"I believe FCC is the best project for CERN's future, we need to work together to make it happen" - <u>Fabiola Gianotti, FCC Week London, 5th June 2023</u>

Impressive FCC-ee luminosities

Very broad FCC-ee physics programme

Very broad FCC-ee physics programme

QCD at the core of future e⁺e⁻ colliders

- Though QCD is not per se the driving force for FCC-ee, it is crucial for a huge range of studies:
 - ► 70–80% of H, Z, W boson decays have fully hadronic final states!
- 1. Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states & jet dynamics.
- 3. Heavy/light quark & gluon separation (flavour tagging, substructure,...) is key for multiple SM measurements (H Yukawas,...) and BSM searches (X → jj decays,...).
- 4. Non-perturbative QCD (hadronisation, colour reconnection,...) impacts studies with hadronic final states: $e^+e^- \rightarrow WW$,ttbar ($\rightarrow jets$), m_{W} , m_{top} extractions.

QCD at the core of the Higgs e⁺e⁻ programme

80% of the Higgs decays are fully hadronic! (Light Yukawas, FCNC Higgs...)

Precision QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

Advantages compared to p-p collisions:
1) QED initial-state with known kinematics
2) Controlled QCD radiation (only in final-state)
3) Well-defined heavy-Q, quark, gluon jets
4) Smaller non-pQCD uncertainties: no PDFs, no QCD "underlying event",... Direct clean parton fragmentation & hadroniz.
Plus QCD physics in γγ (EPA) collisions:

Precision QCD in e⁺e⁻ collisions (FCC-ee)

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

EPPS Update, GT1 meetg, Oct 2024

Very rich QCD physics at FCC-ee

Very rich QCD at FCC-ee. Examples:

EPPS Update, GT1 meetg, Oct 2024

```
D. d'Enterria (CERN)
```

QCD coupling α_s

■ Determines strength of the strong interaction between quarks & gluons. ■ <u>Single</u> free parameter of QCD in the m_q = 0 limit. ■ Determined at a ref. scale (Q=m₇), decreases as $\alpha_{c} \approx \ln(Q^{2}/\Lambda^{2})^{-1}, \Lambda \approx 0.2$ GeV

• Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{F} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{s} \sim 10^{-3}$

α_{s} impact well beyond QCD

Parametric uncertainties in multiple precision SM observable calculations:

Process	σ (pb)	$\delta lpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 +0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9

Partial width	intr. QCD	para. m_q	para. α_s
$H \rightarrow b\bar{b}$	$\sim 0.2\%$	1.4%	0.4%
$H \to c\bar{c}$	$\sim 0.2\%$	4.0%	0.4%
$H \rightarrow gg$	$\sim 3\%$	< 0.2%	3.7%

Impacts physics approaching Planck scale: EW vacuum stability, GUT

QCD coupling at FCC-ee (Tera-Z)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{ ext{had}}_{ ext{W}, ext{Z}}(Q) = \Gamma^{ ext{Born}}_{ ext{W}, ext{Z}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\rm Z}^{\rm had} = rac{12\pi}{m_{\rm Z}} \cdot rac{\Gamma_{\rm Z}^{\rm e}\Gamma_{\rm Z}^{\rm had}}{(\Gamma_{\rm Z}^{
m tot})^2}$$

Note: Sensitivity to $\alpha_s(m_z)$ from O(4%) virtual corrs.

[DdE, Jacobsen: arXiv:2005.04545]

- FCC-ee will reach 0.1% precision on $\alpha_s(m_z)$ (×20 better than LEP results):
 - Huge Z pole stats. ($\times 10^5$ LEP):
 - Exquisite syst./parametric precision:

$$\begin{split} \Delta \mathbf{R}_{Z} &= 10^{-3}, \quad \mathbf{R}_{Z} = 20.7500 \pm 0.0010 \\ \Delta \Gamma_{Z}^{\text{tot}} &= 0.1 \text{ MeV}, \quad \Gamma_{Z}^{\text{tot}} = 2495.2 \pm 0.1 \text{ MeV} \\ \underline{\Delta \sigma_{Z}^{\text{had}}} &= 4.0 \text{ pb}, \quad \sigma_{Z}^{\text{had}} = 41\,494 \pm 4 \text{ pb} \\ \hline{\Delta m_{Z}} &= 0.1 \text{ MeV}, \quad m_{Z} = 91.18760 \pm 0.00001 \text{ GeV} \\ \Delta \alpha &= 3 \cdot 10^{-5}, \quad \Delta \alpha_{\text{had}}^{(5)}(m_{Z}) = 0.0275300 \pm 0.0000009 \end{split}$$

- TH uncertainty to be reduced by $\times 4$ from missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

QCD coupling at FCC-ee (Oku-W)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{
m had}_{
m W,Z}(Q) = \Gamma^{
m Born}_{
m W,Z} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{
m EW} + \delta_{
m mix} + \delta_{
m np}
ight) ~,$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathrm{W},\mathrm{Z}}(Q) = \frac{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathrm{W},\mathrm{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

Note: Sensitivity to $\alpha_s(m_z)$ from O(4%) virtual corrs.

[DdE, Jacobsen: arXiv:2005.04545]

- FCC-ee will reach 0.2% precision on $\alpha_s(m_w)$ (×300 better than LEP results):
 - Huge W pole stats. ($\times 10^4$ LEP-2).
 - Exquisite syst./parametric precision:

 $\Gamma_W^{\rm tot}=2088.0\pm 1.2~{\rm MeV}$

- $R_{\rm W} = 2.08000 \pm 0.00008$
- $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

 $|V_{cs}| = 0.97359 \pm 0.00010 \quad \leftarrow O(10^{12}) D \text{ mesons}$

- TH uncertainty to be reduced by $\times 10$ from missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

Very rich QCD at FCC-ee. Examples:

17/31

Gluon jet tagging at FCC-ee

Current state-of-the-art GNN ParticleNet (+IDEA): ε_g~70%, ε_{q-mistag}~0.07–0.1

Performance needs to measure e-Yukawa via $ee \rightarrow H(gg)$ over $ee \rightarrow Z(qq)$: $\varepsilon_g \sim 70\%$, $\varepsilon_{q-mistag} \sim 0.01$ (factor x10 improvement). However...

Gluon jets are badly known today

MC LL parton showers differ vastly on gluon jet substructure properties:

High-precision g & q jet studies at FCC-ee

- Exploit $\mathcal{O}(200.000)$ ee \rightarrow ZH(gg) at 260 GeV as a "pure gluon" factory: H \rightarrow gg provides perfectly tagged digluon events.
- Compare to $\mathcal{O}(10^{12}) \text{ Z} \rightarrow qq(g)$ evts at 91 GeV:
 - Gluon vs. quark via H→gg vs. Z→qq
 (Profit from excellent g,b separation)
 - Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
 - Vary E_{jet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
 - Vary jet radius: small-R down to calo resol
 - Multiple high-precision analyses at hand:
 - Jet tagging: ML training on <u>pure</u> samples: Improve q/g/Q discrimination
 - pQCD: Improve/retune NNLL parton showers, Lund Plane, jet substructure...
 - non-pQCD: Improved gluon hadronization: Leading η's ? Baryon junctions ?
 Octet neutralization? Colour reconnection? Glueballs ?

Very rich QCD at FCC-ee. Examples:

Colour reconnection studies at FCC-ee

- Colour reconnection among partons is source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states. Especially in pp (MPI cross-talk).
- CR "string drag" effect impacts all FCC-ee multi-jet final-states: e⁺e⁻ → WW(4j), H(2j,4j), ttbar,...
 - Shifted masses & angular correlations (CP studies).
 - Combined LEP $e^+e^- \rightarrow WW(4j)$ data best described with 49% CR, 2.2 σ away from no-CR.
- Exploit huge stat WW at rest (×10⁴ LEP) to measure
 - $\rm m_w$ leptonically & hadronically and constrain CR:

"Recent" PYTHIA option: QCD-inspired CR (QCDCR) (1505.01681):

Double junction reconnection $q = \frac{q}{q} \xrightarrow{q} q \Rightarrow q \xrightarrow{q} q \xrightarrow{J} \xrightarrow{J} q \xrightarrow{q} q$ (qq: 1/3, gg: 10/64, model: 2/9)

Triple-junction also in
 HERWIG cluster
 model. (1710.10906)

 $\Gamma_W \gg \Lambda_{\rm OCD}$

 $\mathcal{O}(1)$

 \otimes kinematics

Vacuum hadronization studies at FCC-ee

- Precision low- p_T PID hadrons in $10^{12} e^+e^- \rightarrow Z \rightarrow (10^{14} hadrons)$ for studies:
 - Baryon & strangeness prod. Colour string dynamics
 - Final-state correlations: space-time, spin (BE, FD)
 - Exotic BR(10⁻¹²) bound-states: Onia, multi-quark states, glueballs, ...

 Understand breakdown of universality of parton hadronization with system size observed at LHC.

ā

Baseline vacuum e⁺e⁻ studies for high-density QCD in small & large systems.

Also e.g. impact ultra-high-energy cosmic-ray MCs (muon puzzle)

Summary (1): High-precision QCD at FCC-ee

 The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
 Unique QCD precision studies accessible at FCC-ee:

Quick flash on QCD physics topics at FCC-pp...

Parton densities at very-low, low, and high-x

PDFs impact on BSM & precision SM physics

α_s running at the multi-TeV scale

 Jets from pp collisions above LHC energies provide the only known means to test asymptotic freedom & new coloured sectors above ~3 TeV:

Figure 5.5: Left plot: combined statistical and 1% systematic uncertainties, at 30 ab⁻¹, vs p_T threshold; these are compared to the rate change induced by the presence of 4 or 8 TeV gluinos in the running of α_S . Right plot: the gluino mass that can be probed with a 3σ deviation from the SM jet rate (solid line), and the p_T scale at which the corresponding deviation is detected.

- Jet cross sections with <10% stat. uncert. up to p_T~25 TeV: Sensitivity to e.g. m_g=4–8 GeV gluinos in α_s running
 from DDE fite, advanced ist substructure (L1D), badropia a
- α_s from PDF fits, advanced jet substructure (LJP), hadronic obs.,

Highly-boosted jets & multijet events

- Proton-proton collisions at 100 TeV provide unique conditions to produce & study multi-TeV objects: top, W, Z, H, R_{BSM}(jj),... Resolving small angular dijet sep. ΔR ≈ 2M(jj)/p₊(j).
- Jet substructure: key to separate dijets from QCD & (un)coloured resonance decays, e.g. $R_{10-TeV} \rightarrow tt,qq,gg,WW$:
- Diffs. in MC generators for quark vs. gluon jets (& jet radius):***
- Also unique multijet (N>>10)

EPPS Update, GT1 meetg, Oct 2024

Also... Unique many-body QCD with ions

• Unparalleled HI physics with $\times 7$ (39 TeV), $\times 10$ larger \sqrt{s} , \mathcal{L}_{int} than LHC:

D. d'Enterria (CERN)

Summary (2): QCD at the FCC-hh

Unique QCD precision and multi-TeV studies at the energy frontier:

EPPS Update, GT1 meetg, Oct 2024

D. d'Enterria (CERN)

Back-up slides

$\textbf{Higgs} \rightarrow \textbf{gg} \ \textbf{decay} \ \textbf{and} \ \textbf{BSM}$

H \rightarrow gg partial width known today theoretically at N⁴LO (approx) accuracy

Percent deviations on Higgs-gluon coupling in BSM models:

Table 5: Deviations from the Standard Model predictions for the Higgs boson couplings in %

	Model	$b\overline{b}$	$c\overline{c}$	<u>gg</u>	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$	_
1	MSSM [40]	+4.8	-0.8	-0.8	-0.2	+0.4	-0.5	+0.1	+0.3	_
2	Type II 2HD $[42]$	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8	
3	Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8	[T. Barklow et al.
4	Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2	arXiv:1708.08912]
5	Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4	
6	Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0	
7	Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8	
8	Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5	
9	Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	

Higgs decays widths & QCD coupling

H \rightarrow gg partial width known today theoretically at N⁴LO (approx) accuracy

Uncertainties: O(3%) TH + O(4%) parametric from $\alpha_s(m_z)=0.118\pm1\%$ (today):

Partial width	intr. QCD	intr. electroweak	total	para. m_q	para. α_s
$H ightarrow b ar{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	1.4%	0.4%
$H \to c \bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	4.0%	0.4%
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$	< 0.2%	3.7%

FCC-ee needs a much more precise $\alpha_s(m_z)$ to constrain κ_g at $\pm 0.7\%$ (exp)

Strange-quark jet tagging at FCC-ee

FCC-ee will produce O(400) H → ssbar decays. Can we measure y_s?
 ParticleNet jet tagger exploiting hadron PID (via dE/dx, ToF, RICH):

Tagger exploits directly full list of jet constituents (ReconstructedParticles):

[O(50) properties/particle]

 \times [~50-100 particles/jet]

~ O(1000) inputs/jet

■ Analysis e⁺e⁻ → HZ, H → qq with N=2j exclusive jet algorithm: Backgds: WW/ZZ/Z, qqH, HWW, HZZ Combined jj (Hbb, Hcc, Hss, Hbb) fit yields: H → ss with O(80%) uncertainty

Separating H \rightarrow ss and H $\rightarrow~gg$

Another clean s source? $W \rightarrow c\bar{s}$

EPPS Update, GT1 meetg, Oct 2024

fragmentation hadrons

Flavor-violating Higgs decays at FCC-ee

EPPS Update, GT1 meetg, Oct 2024

D. d'Enterria (CERN)

α_s from photon QCD structure function (NLO)

10

10⁻⁷ Q² [GeV²]

D. d'Enterria (CERN)

Current & future α_s precision

MethodCurrentNear (long-term) futuretheory & exp. uncertainties sourcestheory & experimental progress0.7% $\approx 0.3\%$ (0.1%)(1) Lattice0.7% $\approx 0.3\%$ (0.1%)Finite lattice spacing & stats. N ^{2,3} LO pQCD truncationReduced latt. spacing, Add more observables. Higher renorm. scale via step-scaling to more observables. Higher renorm. scale via step-scaling to more observables. Higher renorm. scale via step-scaling to more observables.(2) τ decays1.6%<1.%N ³ LO CIPT vs. FOPT diffs.Add N ⁴ LO terms. Solve CIPT-FOPT diffs. Limited τ spectral dataImproved τ spectral functions at Belle II(3) $Q\overline{Q}$ bound states 3.3% $\approx 1.5\%$ N ^{2,3} LO pQCD truncationAdd N ^{3,4} LO & more (cd), (bib bound states $m_{c,b}$ uncertaintiesCombined $m_{c,b} + \alpha_S$ fits(4) DIS & PDF fits 1.7% $\approx 1.\%$ NNLO+PN(1.2.3)LI truncation Different NP analytical & PS corrs. Improved NP corrs. via: NNLL PS, grooming NNLO+N(1.2.3)LI truncation Different NP analytical & PS corrs. Improved PDF data at B factories (FCC-ee)(6) Electroweak fits N ³ LO truncation Small LEP+SLD datasetsN ⁴ LO, reduced param. uncerts. (m.w.z, α , CKM) Add Wobson. Ter.Z, Oku-W datasets (FCC-ee)(7) Hadron colliders (7) Hadron colliders2.4% NNLO(+NNLL) truncation, PDF uncerts. Imited data sets (tf, W, Z, e-p jets)N ³ LO chros, improved PDF Add More datasets Z, pr, p-p jets, σ_i/σ_j ratios, improved PDF Add More datasets Z, pr, p-p jets, σ_i/σ_j ratios, improved PDF Add More datasets Z, pr, p-p jets, σ_i/σ_j ratios, improved PDF Add More datasets Z, pr, p-p jets, σ_i/σ_j ratios, improved PDF <b< th=""><th></th><th colspan="6">Relative $\alpha_S(m_Z^2)$ uncertainty</th></b<>		Relative $\alpha_S(m_Z^2)$ uncertainty					
$ \begin{array}{ $	Method	Current	Near (long-term) future				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		theory & exp. uncertainties sources	theory & experimental progress				
	(1) Lattice	0.7%	$\approx 0.3\% (0.1\%)$				
$ \begin{array}{c} {\rm N}^{2.3} {\rm LO} \ {\rm pQCD} \ {\rm truncation} & {\rm Add} \ {\rm N}^{3.4} {\rm LO}, \ {\rm active \ charm (QED \ effects)} \\ {\rm Higher \ renorm. \ scale \ via \ step-scaling \ to \ more \ observ.} \\ {\rm Higher \ renorm. \ scale \ via \ step-scaling \ to \ more \ observ.} \\ {\rm N}^3 {\rm LO} \ {\rm CIPT \ vs. \ FOPT \ diffs.} & {\rm Add} \ {\rm N}^4 {\rm LO} \ {\rm terms. \ Solve \ CIPT-FOPT \ diffs.} \\ {\rm N}^3 {\rm LO} \ {\rm CIPT \ vs. \ FOPT \ diffs.} & {\rm Improved \ rescell \$	(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables				
		$N^{2,3}LO pQCD truncation$	Add N ^{3,4} LO, active charm (QED effects)				
(2) τ decays1.6%< 1.%N³LO CIPT vs. FOPT diffs.Add N ⁴ LO terms. Solve CIPT-FOPT diffs.Limited τ spectral dataImproved τ spectral functions at Belle II(3) $Q\overline{Q}$ bound states3.3% $\approx 1.5\%$ N ^{2.3} LO pQCD truncationAdd N ^{3.4} LO & more (cc), (bb) bound states $m_{c,b}$ uncertaintiesCombined $m_{c,b} + \alpha_S$ fits(4) DIS & PDF fits1.7% $\approx 1\%$ (0.2%)(4) DIS & PDF fitsSpan of PDF-based resultsBetter corr. matrices. More PDF data (LHeC/FCC-eb)(5) e^+e^- jets & evt shapes2.6% $\approx 1.5\%$ (<1%)			Higher renorm. scale via step-scaling to more observ.				
$ \begin{array}{c} (1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2) σ docours	1.6%	< 1.%				
$ \begin{array}{c} \line \begin{timeskipped} \line timeskipped \line \begin{timeskipped \line \begin \begin{timeskipped \line \begin \begin{timeskipped \line $	(2) / decays	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT diffs.				
(3) $Q\overline{Q}$ bound states3.3% $\approx 1.5\%$ N ^{2,3} LO pQCD truncationAdd N ^{3,4} LO & more ($c\overline{c}$), ($b\overline{b}$) bound states $m_{c,b}$ uncertaintiesCombined $m_{c,b} + \alpha_S$ fits $m_{c,b}$ uncertaintiesCombined $m_{c,b} + \alpha_S$ fits(4) DIS & PDF fits1.7% $\approx 1\% (0.2\%)$ N ^{2,(3)} LO PDF (SF) fitsN ³ LO fits. Add new SF fits: $F_2^{p,d}$, g_i (EIC)Span of PDF-based resultsBetter corr. matrices. More PDF data (LHeC/FCC-eh)(5) e ⁺ e ⁻ jets & evt shapes2.6% $\approx 1.5\% (< 1\%)$ Different NP analytical & PS corrs.Improved NP corrs. via: NNLL PS, groomingLimited datasets w/ old detectorsNew improved data at B factories (FCC-ee)(6) Electroweak fits2.3%($\approx 0.1\%$)NNLO(+NNLL) truncationN ⁴ LO, reduced param. uncerts. ($m_{W,Z}, \alpha$, CKM)Mold wrosoliders2.4% $\approx 1.5\%$ (7) Hadron colliders2.4% $\approx 1.5\%$ Uwrld average0.8\% $\approx 0.4\% (0.1\%)$		Limited τ spectral data	Improved $ au$ spectral functions at Belle II				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(2) \overline{OO} bound states	3.3%	pprox 1.5%				
$ \begin{array}{c} \begin{array}{c} m_{c,b} \mbox{ uccrtainties} & \mbox{Combined } m_{c,b} + \alpha_{S} \mbox{ fits} \\ \approx 1\% (0.2\%) \\ & \approx 1\% (0.2\%) \\ \end{array} \\ \begin{array}{c} (4) \mbox{ DIS \& PDF \mbox{ fits} \\ N^{2,(3)} \mbox{ LO PDF (SF) \mbox{ fits} \\ Span of PDF \mbox{ based results} \\ \end{array} \\ \begin{array}{c} \mbox{ Span of PDF \mbox{ based results} \\ \mbox{ Span of PDF \mbox{ based results} \\ \end{array} \\ \begin{array}{c} \mbox{ Better \mbox{ corr. matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} \mbox{ corr. matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \mbox{ matrices. More PDF \mbox{ data (LHeC/FCC-eb)} \\ \end{array} \\ \begin{array}{c} matrices. More PDF \mbox{ data (Linted (Linted matrices) \\ \mbox{ matrices. More power \mbox{ corres. via: NNLL PS, grooming \\ mbox{ matrices (MM, 2, 3LO \mbox{ matrices (MM, 2, 4O \mbox{ matrices (MM, 2, 4D \mbox{ mat$	(5) QQ Dound states	$N^{2,3}LO pQCD truncation$	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states				
(4) DIS & PDF fits1.7% $\approx 1\% (0.2\%)$ N ^{2,(3)} LO PDF (SF) fitsN ³ LO fits. Add new SF fits: $P_2^{p,d}$, g_i (EIC)Span of PDF-based resultsBetter corr. matrices. More PDF data (LHeC/FCC-eb)(5) e ⁺ e ⁻ jets & evt shapes2.6% $\approx 1.5\% (< 1\%)$ NNLO+N ^(1,2,3) LL truncationAdd N ^{2,3} LO+N ³ LL, power correctionsDifferent NP analytical & PS corrs.Improved NP corrs. via: NNLL PS, groomingLimited datasets w/ old detectorsNew improved data at B factories (FCC-ee)(6) Electroweak fits2.3%($\approx 0.1\%$)N ³ LO truncationN ⁴ LO, reduced param. uncerts. ($m_{W,Z}$, α , CKM)Madron colliders2.4% $\approx 1.5\%$ (7) Hadron collidersLimited data sets ($t\bar{t}$, W, Z, e-p jets)N ³ LO+NNLL (for color-singlets), improved PDFsMorld average0.8% $\approx 0.4\% (0.1\%)$		$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits				
$ \begin{array}{c} (4) \mbox{ bb \ \ \ } M^{2}(3) \mbox{ LO PDF (SF) fits} \\ \mbox{ Span of PDF-based results} \\ (5) \mbox{ e^+e^- jets \ \ } e^+e^- jets \ \ \ \ } e^+e^- jets \ \ \ \ } e^+e^- jets \ \ \ \ \ \ } e^+e^- jets \ \ \ \ \ \ \ \ \ } e^+e^- jets \ \ \ \ \ \ \ \ \ \ } e^+e^- jets \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(4) DIS & PDF fits	1.7%	pprox 1%~(0.2%)				
$ \begin{array}{c} \mbox{Span of PDF-based results} & \mbox{Better corr. matrices. More PDF data (LHeC/FCC-eh)} \\ \hline \mbox{2.6%} & $$$$ \approx 1.5\%$ (< 1\%)$ \\ \hline \mbox{$NNLO+N^{(1,2,3)}LL truncation} & \mbox{$Add N^{2,3}LO+N^3LL, power corrections} \\ \hline \mbox{$Different NP analytical \& PS corrs. \\ $Limited datasets w/ old detectors & \mbox{$Improved NP corrs. via: NNLL PS, grooming} \\ \hline \mbox{$Limited datasets w/ old detectors & \mbox{$Nww improved data at B factories (FCC-ee)} \\ \hline \mbox{$MNLO+N^3LO+N^3LL power corrections \\ $Limited datasets w/ old detectors & \mbox{$New improved data at B factories (FCC-ee)} \\ \hline \mbox{$MNLO+NLD truncation & N^4LO, reduced param. uncerts. $(m_{W,Z}, \alpha, CKM)$ \\ \hline \mbox{$Mall LEP+SLD datasets & \mbox{$Add W boson. Tera-Z, Oku-W datasets (FCC-ee)} \\ \hline \mbox{$NNLO(+NNLL) truncation, PDF uncerts. \\ \hline \mbox{$NNLO(+NNLL) truncation, PDF uncerts. \\ \hline \mbox{$NNLO(+NNLL) truncation, PDF uncerts. \\ \hline \mbox{$Mall datasets ($t\overline{t}, W, Z, e-p jets) & \mbox{$Add more datasets: $Z p_T, p-p jets, $\sigma_i/$\sigma_j ratios,} \\ \hline \mbox{$More datasets ($0.1\%$) & $$$ $$ \mbox{$More datasets: $Z p_T, p-p jets, $\sigma_i/$\ $Mall datasets ($0.1\%$) & $$ $$ $$ \end{tabular} } \end{array} } } } } } } } } } } } } } } } \label{eq:second} % \begin{tabular}{lllllllllllllllllllllllllllllllllll$	(4) DIS & I DI 1103	$N^{2,(3)}LO$ PDF (SF) fits	$N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$, g_{i} (EIC)				
$ \begin{array}{c} \begin{array}{c} 2.6\% & \approx 1.5\% \ (< 1\%) \\ \hline \text{NNLO+N}^{(1,2,3)} \text{LL truncation} & \text{Add N}^{2,3} \text{LO+N}^{3} \text{LL, power corrections} \\ \hline \text{Different NP analytical & PS corrs.} & \text{Improved NP corrs. via: NNLL PS, grooming} \\ \hline \text{Limited datasets w/ old detectors} & \text{New improved data at B factories (FCC-ee)} \end{array} \\ \hline \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/FCC-eh)				
$ \begin{array}{c} (5) \ e^{-e^{-j} jets \ & e^{-v} stapes} & NNLO+N^{(1,2,3)} LL \ truncation \\ Different NP \ analytical \ & PS \ corrs. \\ Limited \ datasets \ w/ \ old \ detectors \\ Limited \ datasets \ w/ \ old \ detectors \\ New \ improved \ NP \ corrs. \ via: \ NNLL \ PS, \ grooming \\ New \ improved \ data \ at \ B \ factories \ (FCC-ee) \\ \hline \\ (6) \ Electroweak \ fits \\ \hline \\ (6) \ Electroweak \ fits \\ \hline \\ (7) \ Hadron \ colliders \\ \hline \\ ($	(5) e^+e^- jets ℓ_r out shapes	2.6%	pprox 1.5%~(<1%)				
$ \begin{array}{c} \mbox{Different NP analytical \& PS corrs.} & \mbox{Improved NP corrs. via: NNLL PS, grooming} \\ \mbox{Limited datasets w/ old detectors} & \mbox{New improved data at B factories (FCC-ee)} \\ \end{array} \\ \hline \\ (6) \mbox{Electroweak fits} & \mbox{2.3\%} & (\approx 0.1\%) \\ \mbox{N^3LO truncation} & \mbox{N^4LO, reduced param. uncerts.} (m_{W,Z}, \alpha, CKM) \\ \mbox{Small LEP+SLD datasets} & \mbox{Add W boson. Tera-Z, Oku-W datasets (FCC-ee)} \\ \hline \\ (7) \mbox{Hadron colliders} & \mbox{2.4\%} & \mbox{2.4\%} & \mbox{2.4\%} & \mbox{2.15\%} \\ \mbox{NNLO(+NNLL) truncation, PDF uncerts.} & \mbox{N^3LO+NNLL (for color-singlets), improved PDFs} \\ \mbox{Limited data sets ($t\bar{t}, W, Z, e-p$ jets)} & \mbox{Add more datasets: Z p_T, p-p jets, σ_i/σ_j ratios,} \\ \hline \\ $	(5) e e Jets & evt snapes	NNLO+N ^{$(1,2,3)$} LL truncation	Add N ^{2,3} LO+N ³ LL, power corrections				
		Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming				
(6) Electroweak fits 2.3% $(\approx 0.1\%)$ N ³ LO truncationN ⁴ LO, reduced param. uncerts. $(m_{W,Z}, \alpha, CKM)$ Small LEP+SLD datasetsAdd W boson. Tera-Z, Oku-W datasets (FCC-ee)(7) Hadron colliders 2.4% NNLO(+NNLL) truncation, PDF uncerts. Limited data sets ($t\bar{t}$, W, Z, e-p jets)N ³ LO+NNLL (for color-singlets), improved PDFs Add more datasets: $Z p_T$, p-p jets, σ_i/σ_j ratios,World average 0.8% $\approx 0.4\%$ (0.1%)		Limited datasets $\mathbf{w}/$ old detectors	New improved data at B factories (FCC-ee)				
$ \begin{array}{c} \text{N}^{3}\text{LO truncation} & \text{N}^{4}\text{LO, reduced param. uncerts. }(m_{W,Z}, \alpha, \text{CKM}) \\ & \text{Small LEP+SLD datasets} & \text{Add W boson. Tera-Z, Oku-W datasets (FCC-ee)} \\ \text{(7) Hadron colliders} & 2.4\% & \approx 1.5\% \\ & \text{NNLO(+NNLL) truncation, PDF uncerts.} & \text{N}^{3}\text{LO+NNLL (for color-singlets), improved PDFs} \\ & \text{Limited data sets }(t\bar{t}, W, Z, e-p \text{ jets}) & \text{Add more datasets: } Z p_{T}, p-p \text{ jets, } \sigma_{i}/\sigma_{j} \text{ ratios,} \\ & \text{World average} & 0.8\% & \approx 0.4\% (0.1\%) \end{array} $	(6) Electroweak fits	2.3%	$(\approx 0.1\%)$				
$ \begin{array}{ c c c } & Small LEP+SLD datasets & Add W boson. Tera-Z, Oku-W datasets (FCC-ee) \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	(0) Electroweak hts	$N^{3}LO$ truncation	N^4LO , reduced param. uncerts. ($m_{W,Z}$, α , CKM)				
(7) Hadron colliders 2.4% $\approx 1.5\%$ NNLO(+NNLL) truncation, PDF uncerts. Limited data sets ($t\bar{t}$, W, Z, e-p jets)N ³ LO+NNLL (for color-singlets), improved PDFs Add more datasets: $Z p_T$, p-p jets, σ_i/σ_j ratios,World average 0.8% $\approx 0.4\%$ (0.1%)		Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)				
NNLO(+NNLL) truncation, PDF uncerts. Limited data sets ($t\bar{t}$, W, Z, e-p jets)N ³ LO+NNLL (for color-singlets), improved PDFs Add more datasets: Z p_{T} , p-p jets, σ_i/σ_j ratios,World average0.8% $\approx 0.4\%$ (0.1%)	(7) Hadron collidors	2.4%	$\approx 1.5\%$				
Limited data sets ($t\bar{t}$, W, Z, e-p jets)Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,World average0.8% $\approx 0.4\%$ (0.1%)	(1) Hadron conders	NNLO(+NNLL) truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), improved PDFs				
World average 0.8% $\approx 0.4\% (0.1\%)$		Limited data sets $(t\bar{t}, W, Z, e-p \text{ jets})$	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,				
	World average	0.8%	pprox 0.4% (0.1%)				

Well-defined exp./th. path towards $\alpha_s(m_z)$ permil precision in coming years

α_s extractions from jet fragmentation (NLO,NNLO*)

(full-NNLO corrections missing) Figure 3: Energy measured in e⁺e⁻

Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in e^+e^- and DIS data fitted to the NNLO^{*}+NNLL predictions. The obtained \mathcal{K}_{ch} normalization constant, individual NNLO^{*} $\alpha_s(m_z)$ values, and the goodness-of-fit per degree-of-freedom χ^2/ndf .