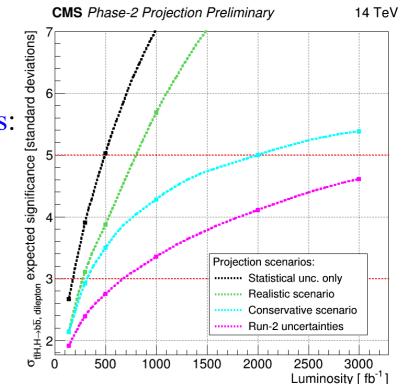
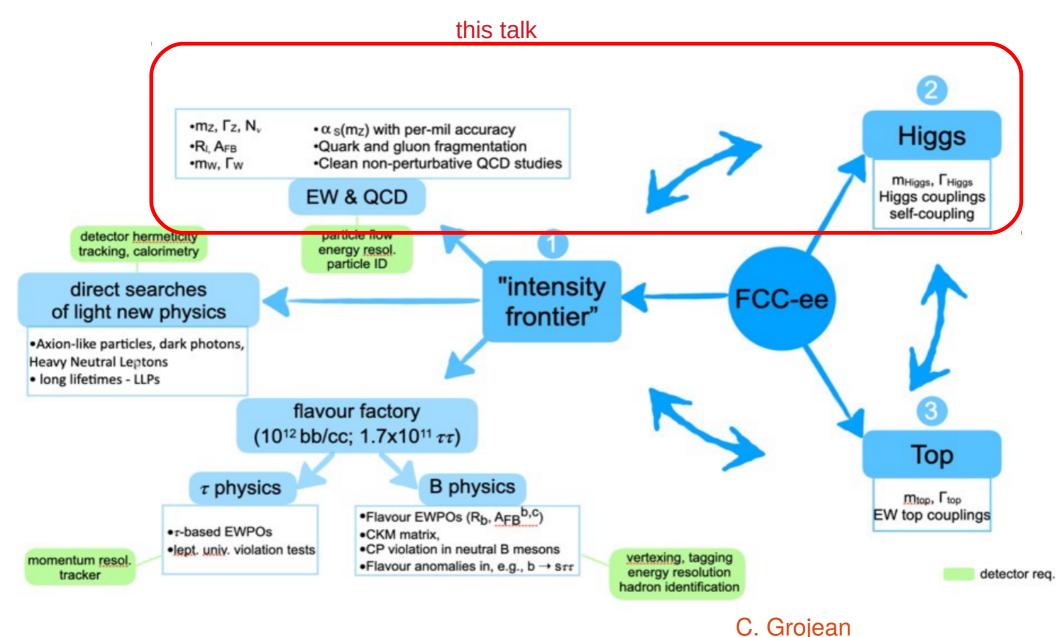
Electroweak Physics & SM precision tests

Elisabeth Petit CPPM

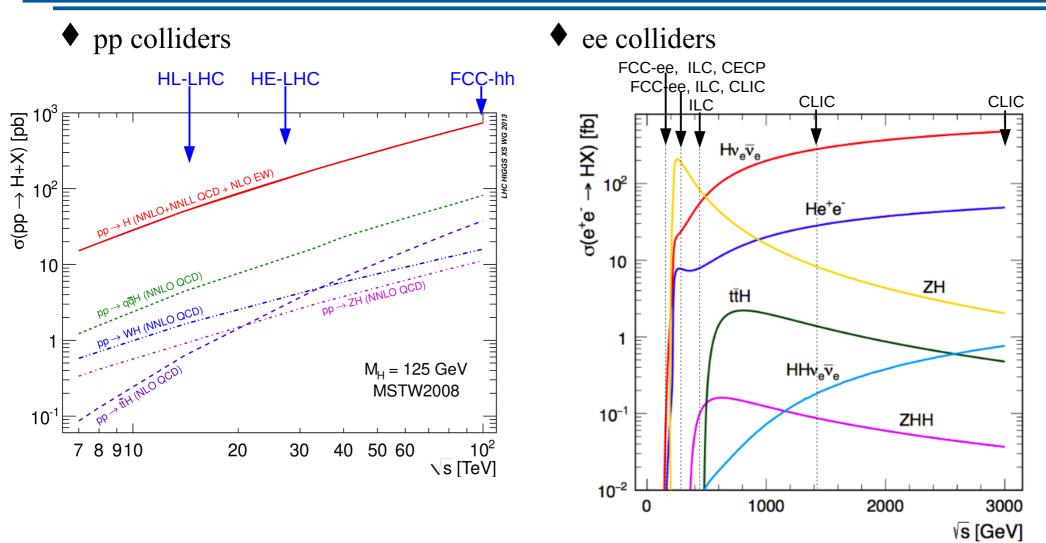


European Strategy for Particle Physics Update: 1st meeting of the SM and beyond WG (GT1) 4th of October 2024


Context

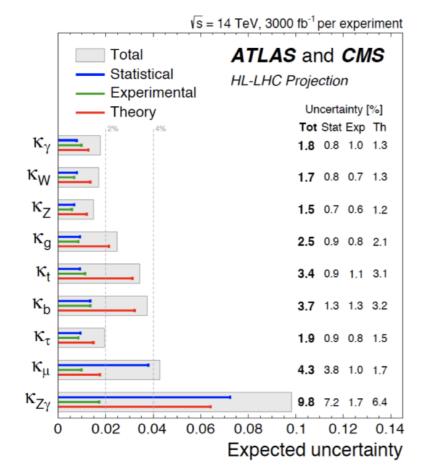
- European Strategy for Particle Physics 2018-2020
 - CERN Yellow Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC (link)
 - symposium in 2019 + briefing book (link) + conclusions (link)
- US Snowmass process 2020-2022
 - proceedings end of 2022
 - White paper by ATLAS and CMS (link)

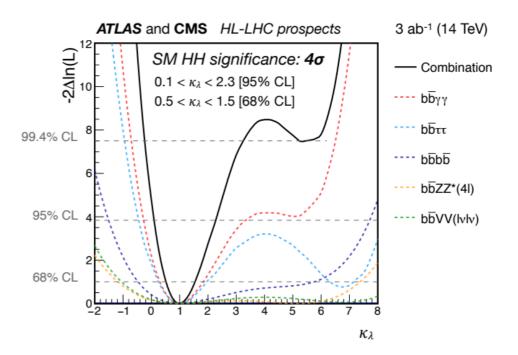
- Assumption on systematics for HL-LHC studies:
 - statistics-driven: data $\rightarrow \sqrt{L}$, simulation $\rightarrow 0$
 - theory uncertainties typically halved
 - intrinsic detector limitations stay ~constant
 - luminosity uncertainty 1%
 - PDF uncertainties reduced by a factor 3 to 4



FCC-ee physics case (true for most ee colliders)

Higgs boson physics


Higgs production at pp and ee colliders


- High cross-section and luminosity
 - from 2.10⁷ (LHC) to 3.10¹⁰ (FCChh) produced Higgs bosons
- ♦ Two important thresholds: √s ~250 GeV for ZH, 500 GeV for ttH

Higgs boson physics at HL-LHC (1)

- Yellow Report released end of 2018 with many updates of Physics Prospective with ATLAS and CMS (link to Higgs chapter)
- Single-Higgs:
 - O(%) uncertainties

- ♦ Di-Higgs:
 - 4σ significance
 - 50% uncertainty on $\lambda_{\rm HHH}$

Higgs boson physics at HL-LHC (2)

- Examples of progress in the past years:
- Coupling to muons through $H \rightarrow \mu\mu$
 - expected precision on signal strength (YR2018 uncertainties):

	Statistical	Experimental	Theoretical	Total	
ATLAS YR2018	+12% -13%	2.00%	+5% -4%	13%	
CMS Snowmass2013				14%	factor 2 in
CMS YR2018	9%	2%	3%	10%	8 years!
CMS Snowmass2021	6%	2%	2%	7%	

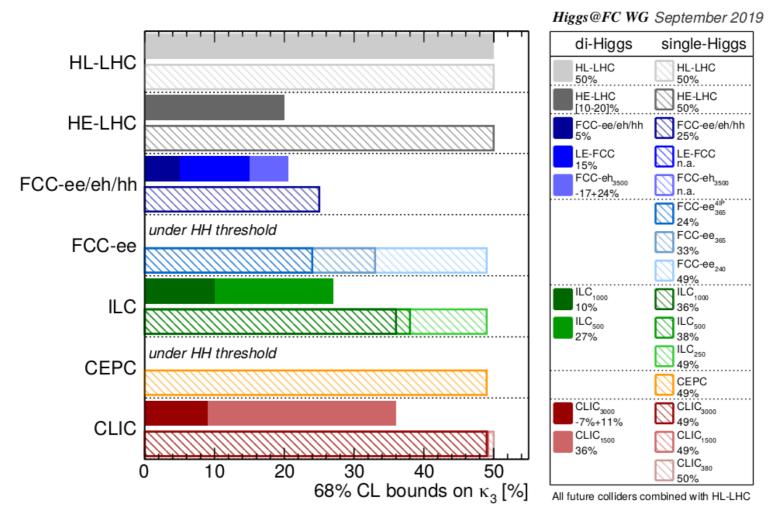
- 5σ can be expected at the end of Run 3
- Di-Higgs: YR2018 ATLAS+CMS: expected significance of 4σ
 - improvement in ATLAS HH \rightarrow bb $\tau\tau$ only

	Stat-only	Stat+Syst
YR 2018	2.5σ	2.0σ
Snowmass 2021	4.0σ	2.8σ
ATLAS-PHYS-2024-016	4.9σ	3.8σ

- Also a lot of recent progress on couplings to charm quarks
 - thought to be impossible at the beginning of LHC

CERN-2019-007 ATL-PHYS-PUB-2022-018/ CMS-PAS-FTR-22-001

ATL-PHYS-PUB-20 24-016


Higgs couplings at Future Colliders

0.02 Br_{inv} κ_W κ_{τ} ĸ κ_{μ} free KV $|\kappa_V| \le 1$ 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.82.4 3.2 5 0.0 0.6 1.2 1.8 2.4 3.0 0.01.6 4 Br_{unt} κ_b κ_c κ_Z $\kappa_{Z\gamma}$ free Ky free KV $|\mathbf{k}_V| \le 1$ $|\kappa_V| \le 1$ 2 3 5.07.5 10.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.6 1.2 1.8 2.4 3.0 2.5 2 3 n 0.0ILC1000+ILC500+ILC350+ILC250 FCC-ee+FCC-eh+FCC-hh κ_{γ} κ_{g} FCC-ee₃₆₅+FCC-ee₂₄₀ ILC500+ILC350+ILC250 Higgs@FC WG FCC-ee₂₄₀ ILC250 LHeC $|\kappa_V| \leq 1$ CEPC Kappa-3, 2019 CLIC3000+CLIC1500+CLIC380 HE-LHC $|\kappa_V| \leq 1$ All future colliders combined with HL-LHC CLIC₁₅₀₀+CLIC₃₈₀ HL-LHC $|\kappa_V| \leq 1$ Uncertainty values on $\Delta \kappa$ in %. 1.2 1.6 2.0 Limits on Br (%) at 95% CL. 0.4 0.8 0.6 1.2 1.8 2.4 3.0 0.0 0.0 CLIC₃₈₀

Fig. 3.8: Expected relative precision of the κ parameters and 95% CL upper limits on the branching ratios to invisible and untagged particles for the various colliders. All values are given in %. For the hadron colliders, a constraint $|\kappa_V| \le 1$ is applied, and all future colliders are combined with HL-LHC. Figure is from Ref. [39].

1910.11775

Higgs self-couplings at Future Colliders

- ♦ HL-LHC will exclude the absence of the Higgs self-interaction at 95%CL
- Several of the proposed FCs will reach a sensitivity of $\sim 20\%$ \Rightarrow establish the existence of the self-interaction at 5σ
- CLIC3000/FCC-hh can reach a sensitivity of $\sim 10\%/5\% \Rightarrow$ can start probing ₉ the size of the quantum corrections to the Higgs potential directly

Higgs boson mass

 \blacktriangleright impact on the H \rightarrow ZZ* partial decay width

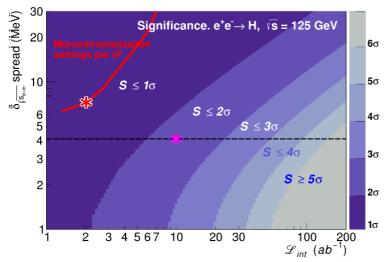
- ◆ Current experimental precision ~0.1% (150 MeV)
- Needs a 10 MeV precision to avoid any limitation on the ZZ/WW couplings
- Prospects at the time of ESPPU2020:

1				
Collider	Strategy	$\delta m_H \ ({\rm MeV})$	Ref.	$\delta(\Gamma_{ZZ^*})$ [%]
LHC Run-2	$m(ZZ), m(\gamma\gamma)$	160	[96]	1.9
HL-LHC	m(ZZ)	10-20	[13]	0.12-0.24
ILC_{250}	ZH recoil	14	[3]	0.17
CLIC ₃₈₀	ZH recoil	78	[98]	0.94
$CLIC_{1500}$	$m(bb)$ in $H\nu\nu$	30 ²⁰	[98]	0.36
CLIC ₃₀₀₀	$m(bb)$ in $H\nu\nu$	23	[98]	0.28
FCC-ee	ZH recoil	11	[99]	0.13
CEPC	ZH recoil	5.9	[2]	0.07

- Can be used to compare detector concepts
 - NB: nominal δ_{mH} of 4 MeV in latest FCC-ee studies

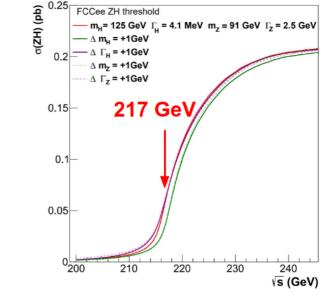
		Combined
Assuming "perfect" (generator-level)	Nominal	4.01
momentum resolution	Ideal resolution	3.33
➢ Nominal 2 T magnetic field → 3 T (stronger field → better tracking)	Magnetic Field 3T	3.54
\succ IDEA drift chamber \rightarrow CLD silicon tracker	CLD 2T (silicon tracker)	4.66

Higgs width


- Impossible to achieve at pp colliders without assumptions
- Mass recoil: mesure inclusive cross-section of ZH without assumption on the Higgs boson's BRs: $\frac{\sigma(e^+e^- \to ZH)}{BR(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)}\right]_{SM} \times \Gamma_H$
 - mild model dependence
- Prospects at the ESPPU2020:

Collider	$\delta\Gamma_H$ [%]	Extraction technique
	from ref.	for standalone result
ILC_{250}	2.3	EFT fit $[3, 4]$
ILC_{500}	1.6	EFT fit $[3, 4, 14]$
ILC_{1000}	1.4	EFT fit $[4]$
$\operatorname{CLIC}_{380}$	4.7	κ -framework [98]
$\operatorname{CLIC}_{1500}$	2.6	κ -framework [98]
$\operatorname{CLIC}_{3000}$	2.5	κ -framework [98]
CEPC	2.8	$\kappa\text{-}\mathrm{framework}~[103,104]$
FCC-ee_{240}	2.7	κ -framework [1]
$FCC-ee_{365}$	1.3	κ -framework [1]

Still ongoing effort, 27 channels to cover!


New ideas for Higgs boson measurements

- $e^+e^- \rightarrow H$ at $\sqrt{s} = 125$ GeV: probe electron-Yukawa coupling
 - only way to do it?
- Small cross-section \Rightarrow large dataset
- Beams must be monochromatized (spread of $E_{CM} \sim \Gamma_{H}$) while keeping large beam luminosities
- \bullet m_H must be known at 4 MeV level

Significance of 1.3σ/IP/year can be achieved

- $e^+e^- \rightarrow ZH$ at $\sqrt{s} = 217$ GeV: probe Higgs mass from threshold
- Needs accurate measurements of Z mass and width at the Z-pole
- ♦ SM-only assumptions → new physics can break the dependency
- Syst. effects to be evaluated

- 5 MeV uncertainty can be achieved with 5 ab-1
 - 10 MeV more realistically

Example of possible Higgs studies at FCC-ee

Where are we today?

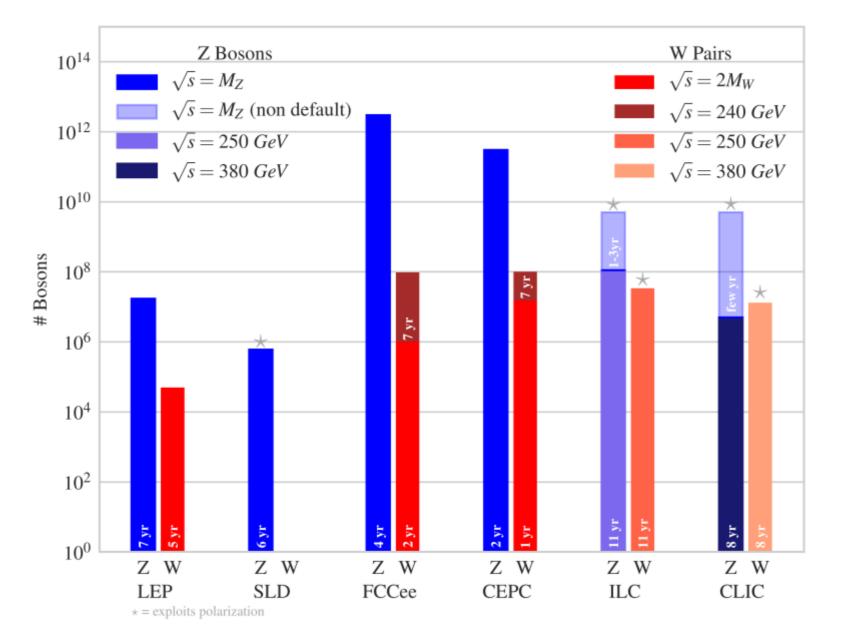
Made a lot of progress over the past years, mainly focused at the 240 GeV threshold

Missing elements for the Feasibility Study for next 1.5 years

- Higgs @ 240 GeV: WW, ZZ (expansion of H width efforts)
- Higgs @ 365 GeV: the total cross-section, couplings, width
- Tau physics
 - Higgs → tau tau can put unique detector requirements
 for tau ID and reconstruction
 - Synergies with Tau polarization at Z pole
- Others: angular analysis, differential measurements

Top activities

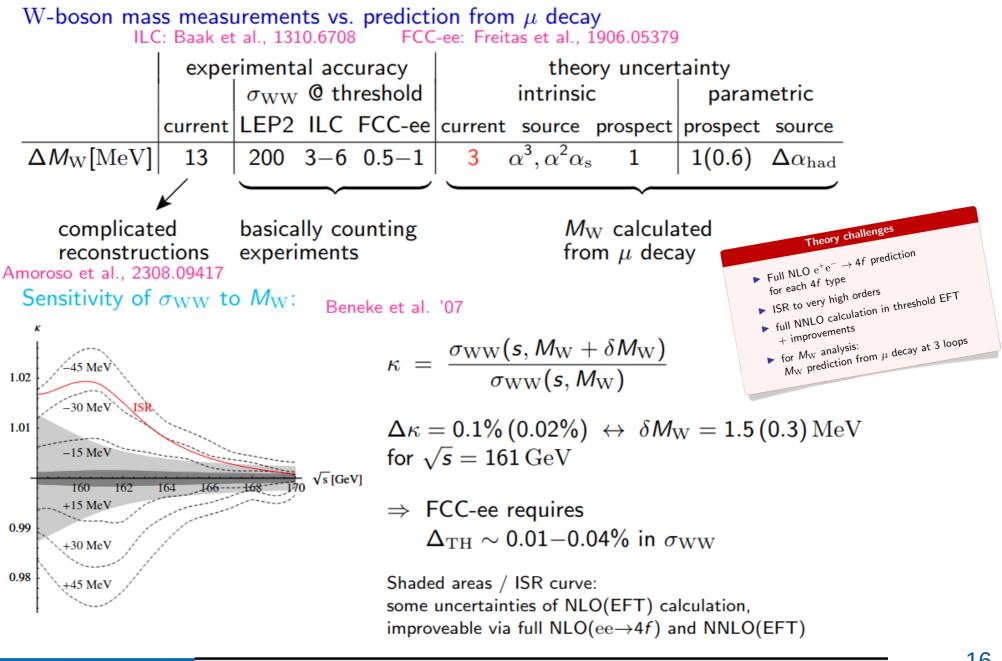
- Threshold mass, width
- EW couplings ttZ, Vts, FCNCs



FCC-ee CDR	FCCee today					
1 %	-					
3.6 %	4.6 %					
1.6 %	0.94 %					
7.5 %	3.5 %					
1.8 %	1.92 %					
0.25 %	0.22 %					
15.8 %	19.5 %					
0.75 %	-					
< 0.25 %	< 0.18 %					
-	124 %					
5 MeV	4 MeV					
1 %	4%					
42 %	30%					
	1 % 3.6 % 1.6 % 7.5 % 1.8 % 0.25 % 15.8 % 0.75 % < 0.25 % 5 MeV 1 %					

EW precision observables

EWPO: introduction


♦ Number of expected weak bosons:

hysikalisches Inst

S.Dittmaier

Physics Landscape

2nd ECFA Workshop on e⁺e⁻ ..., Paestum, Oct 2023

45

Dhusies at the 7 note

FCC-ee: Freitas	· · · · · · · · · · · · · · · · · · ·			· · ·	ick et al., 1504.017	
	experim	ental	accuracy	intrir	isic theory unce	rtainty
	current	ILC	FCC-ee	current	current source	prospect
$\Delta M_{ m Z}[{ m MeV}]$	2.1	_	0.1			
$\Delta \Gamma_{\rm Z} [{ m MeV}]$	2.3	1	0.1	0.4	$lpha^3, lpha^2 lpha_{ m s}, lpha lpha_{ m s}^2$	0.15
$\Delta \sin^2 heta_{ ext{eff}}^\ell [10^{-5}]$	23	1.3	0.6	4.5	$lpha^{3},lpha^{2}lpha_{ m s}$	1.5
$\Delta R_{ m b} [10^{-5}]$	66	14	6	11	$lpha^{3},lpha^{2}lpha_{ m s}$	5
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	$lpha^3, lpha^2 lpha_{ m s}$	1.5

 $E_{\rm A}$

Theory requirements for Z-pole pseudo-observables:

needed:

- ♦ EW and QCD–EW 3-loop calculations
- $\diamond~1 \rightarrow 2$ decays, fully inclusive

problems:

- $\diamond~$ technical: massive multi-loop integrals, γ_5
- $\diamond~$ conceptual: pseudo-obs. on the complex Z-pole

42

• Dedicated program at FCC-ee CEPC

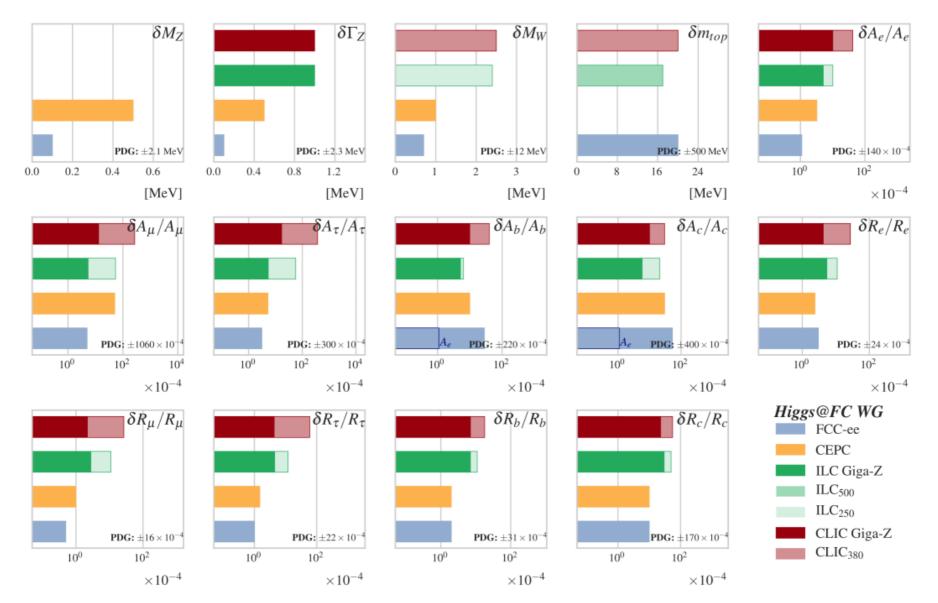
Precision EWK Observables

Submission Inputs: 29, 145, 101, 132, 135

EWPO	Current	CEPC	FCC (ee)	
$M_Z \; [{ m MeV}]$	2.1	0.5	0.1	
$\Gamma_Z \; [\text{MeV}]$	2.1	0.5	0.1	
N_{ν} [%]	1.7	0.05	0.03	
M_W [MeV]	12	1	0.67	
$A_{FB}^{0,b}$ [x10 ⁴]	16	1	< 1	
$\sin^2\theta_W^{\rm eff}~[{\rm x}10^5]$	16	1	0.6	LHeC can measu
$R_b^0 \; [{ m x} 10^5]$	66	4	2-6	$\sin^2\theta_W$ as f(E).
$R^{0}_{\mu} \; [{ m x} 10^5]$	2500	200	100	

LHeC : Mw to 10 MeV but can measure PDFs allowing HL-LHC to half PDF uncertainty and achieve O(5 MeV) Mw. ILC/CLIC : Mw to 5 MeV similar to HL-LHC/TeV average.

European St


16 14/05/19 Mark Lancaster I Electroweak Precision Measurements

• ILC:

- studies of radiative return to the Z at 250 GeV
- possibility of a 1-year run at the Z pole $(3 \times 10^9 \text{ Z's})$

Properties related to the EW bosons

\blacklozenge > factor 10 improvement wrt current values

General requirements:

"Higgs Factory" Programme

- Momentum resolution at $p_T \sim 50$ GeV of $\sigma_{pT}/p_T \simeq 10^{-3}$ commensurate with beam energy spread
- Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
- Superior impact parameter resolution for c, b tagging

Benchmarks for the vertex detector

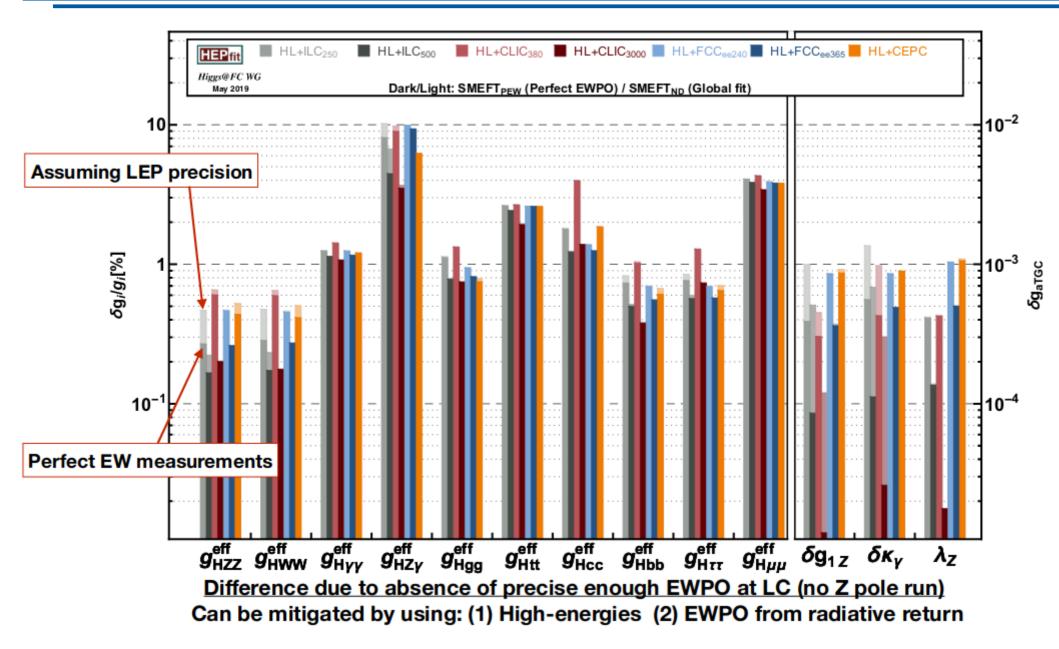
- $H \rightarrow b\overline{b}/c\overline{c}$ couplings
- Br(B \rightarrow K* $\tau\tau$)~10⁻⁷
- Benchmarks for the inner tracker momentum resolution
 - Higgs boson mass
 - $K_s \rightarrow \pi^+ \pi^-$ (decay of B⁺ meson)
- Benchmarks for Particle ID
 - Flavor physics measurements: $B_{S}^{0} \rightarrow D_{S}^{\pm} K^{\mp}, B \rightarrow K^{*} vv, B_{S} \rightarrow \phi vv, \dots$
 - s-quark jet identification → kaon ID (H→ss, V_{ts}, V_{bs}, H→bs, FCNCs, ...)

Ultra Precise EW Programme & QCD

- Absolute normalisation (luminosity) to 10⁻⁴
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10⁻⁵
- Momentum resolution "as good as we can get it"
 - Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from μμ)
- Stability of B-field to 10⁻⁶: stability of Vs meast.
- Benchmarks for calorimetry
 - hadronic: $H \rightarrow WW/ZZ$ jet separation
 - electromagnetic: flavor physics $(B_s \rightarrow D_s K, B_0 \rightarrow \pi^0 \pi^0, Bs \rightarrow K^* \tau \tau),$ Higgs, new physics searches (e.g. $Z \rightarrow \mu e, \tau \rightarrow \mu \gamma, e^+e^- \rightarrow a\gamma \rightarrow \gamma \gamma \gamma),$ bremsstrahlung recovery, tau polarization (separate $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^0 \nu$ and $\tau^{\pm} \rightarrow \pi^{\pm} \nu$)
- Benchmarks for muon spectrometer
 - $B^0 \rightarrow \mu \mu$

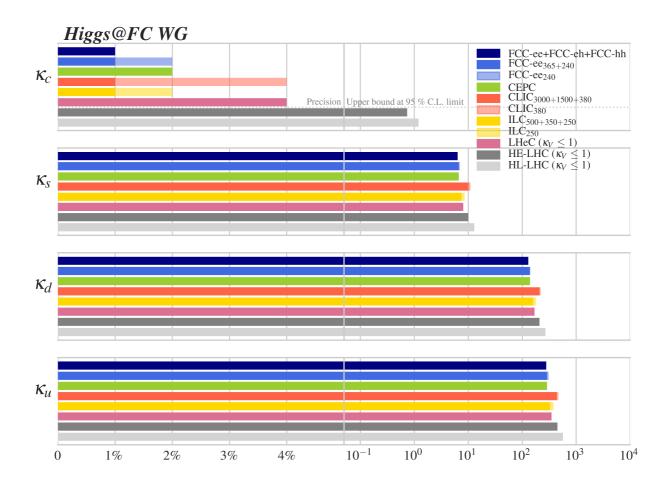
Conclusion

- ◆ Priority of ESPPU2020 to build a e⁺e⁻ collider
 - > factor 10 improvement on EW precision variables and Higgs boson parameters
 - sensitive to order of magnitude heavier NP in loops
 - some measurements impossible at pp colliders (Higgs boson mass and width)
- Continuous progress in the prospective studies
 - but will have to fulfil the assumptions on the systematic uncertainties
- Now that we are progressing to the design of detectors, several EW or Higgs benchmarks can help comparing the options


Back-up

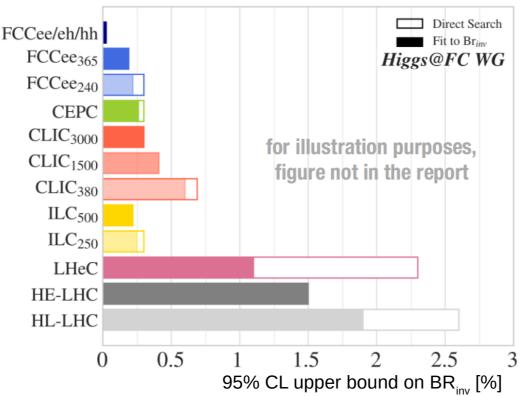
EWPO: improvement wrt HL-LHC

82 _{ve}	Zvmuvi zvel	8Z _{Vta} nuL	Vtal 82	eel 82	⁸² mui ceR	8Zmui muL	NUR SZL	eral Setat	ataR 82	441 82	Juur		² 020 8.	Zul 8.	EttR 82	dal ⁸²	dar	3.sl 82	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	bbl 82	<i>bbR</i>	
ILC ₂₅₀ -		1.2	1.5	1.1	1.1	1.0	1.0	1.0	1.0	1.1	1.0	1.1	1.0	1.0	Ĩ	1.2	1.5	1.2	1.5	1.0	1.0	
ILC ₅₀₀ -	≥ 10	1.2	1.6	1.3	1.8	1.0	1.0	1.0	1.0	1.1	1.0	1.1	1.0	≥ 10	*	1.2	1.5	1.2	1.5	1.0	1.0	
CLIC ₃₈₀ -	≥ 10	5.1	9.6	1.7	1.4	1.1	1.1	1.0	1.0	1.1	1.0	1.1	1.0	1.0		1.2	1.6	1.2	1.6	1.0	1.0	
CLIC ₁₅₀₀ -	≥ 10	5.3	≥ 10	2.7	1.9	1.1	1.1	1.0	1.0	1.1	1.1	1.1	1.1	≥ 10	*	1.3	1.6	1.3	1.6	1.0	1.0	
CLIC ₃₀₀₀ -	$\geq 10^2$	5.4	≥ 10	3.1	2.4	1.1	1.1	1.0	1.0	1.1	1.1	1.1	1.1	≥ 10	*	1.3	1.6	1.3	1.6	1.0	1.0	
CEPC -	1.0	1.0	1.0	1.8	2.0	≥ 10	≥10	1.1	1.0	1.1	1.0	1.1	1.0	1.0		1.2	1.5	1.2	1.5	≥10	≥ 10	
FCCee ₂₄₀ -	≥ 10	≥ 10	≥ 10	7.9	9.2	≥ 10	≥ 10	≥ 10	≥ 10	4.2	2.9	4.2	2.9	1.0		4.6	4.4	4.6	4.4	4.6	4.4	
FCCee ₃₆₅ -	≥ 10	≥ 10	≥ 10	9.9	10.0	≥ 10	≥ 10	≥ 10	≥ 10	4.2	2.9	4.2	2.9	7.5	*	4.6	4.4	4.6	4.4	4.6	4.4	
FCCee/eh/hh -	≥ 10	≥ 10	≥ 10	9.9	≥ 10	≥ 10	≥ 10	≥ 10	≥ 10	≥10	≥ 10	≥ 10	≥ 10	9.1	*	≥ 10	≥ 10	≥ 10	≥ 10	4.6	4.4	


- ◆ Trilinear gauge couplings
 - will achieve precision 10⁻³-10⁻⁴
 - about 2-3 orders of magnitude better than LEP

Impact of EWPO (Z pole meas.) on Higgs couplings

Rare decays: light quarks


• Constraints on light Yukawa obtained from the upper limits on BR_{untagged}

- ♦ Hee: very challenging
 - FCC-ee: SM sensitivity could be reached in a five year run with a dedicated run at $\sqrt{s=m_{_H}} \rightarrow$ to be extended
- Add also reach of H->mesons

Invisible width

- Connection between the Higgs boson and dark matter searches
- In the SM, $BR_{SM, inv} = BR(H \rightarrow 4v) = 0.11\%$
- ◆ Current LHC limits ~ 15-20% @ 95%CL
- Direct searches for Invisible width: fundamentally different in a hadron collider (MET uncertainties) and a lepton collider (Z recoil)
 - Lepton colliders would improve upon HL-LHC limits by an order of magnitude
 - FCC-hh : another order of magnitude: values below the SM

Fine-tuning

- The naturalness problem can be quantified by the ratio ε of the experimentally measured Higgs mass to the quantum corrections to the Higgs mass
 - $\epsilon \sim 10^{-34}$ in SM where no New Physics below the Planck scale
 - $\varepsilon \sim 1$ if no fine-tuning

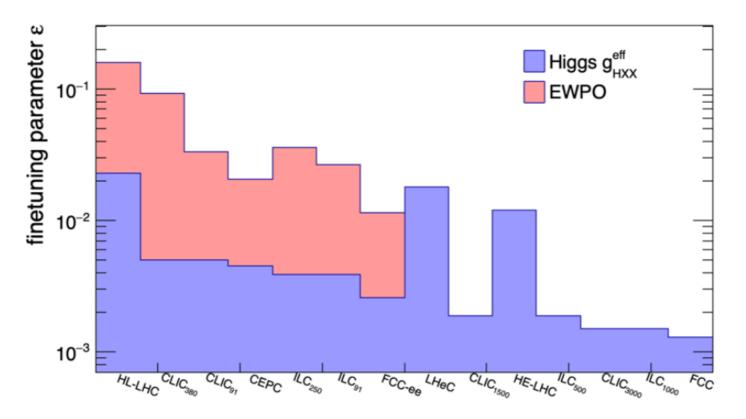


Fig. 3.11: Fine-tuning sensitivity as defined in Sect. 3.1 based on the Higgs coupling and EWPO precision projections. In each case the highest precision Higgs measurement is shown