Implementation of acollinearity in PET Monte Carlo simulations: a subtle misinterpretation hiding in plain sight

Maxime Toussaint¹, Francis Loignon-Houle², Étienne Auger³, Gabriel Lapointe⁴, Jean-Pierre Dussault⁵ and Roger Lecomte^{1,3}

¹Sherbrooke Molecular Imaging Center of CRCHUS and Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
²Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Valencia, Spain
³IR&T Inc., Sherbrooke, QC, Canada ⁴Independent researcher, QC, Canada
⁵Department of Computer Science, Université de Sherbrooke, QC, Canada

22 May 2024

Conclusion

Annihilation photon acollinearity (APA) in PET

Inspired from www.depts.washington.edu/imreslab

Conclusion

Annihilation photon acollinearity (APA) in PET

Example of APA

Conclusion

Annihilation photon acollinearity (APA) in PET

Annihilation photon acollinearity (APA) in PET

Conclusion

Annihilation photon acollinearity (APA) in PET

Blur induced by APA:

Isotropic 2D Gaussian for a point source at the center of a 2D scanner shaped as a perfect circle

The beginning

Goal (back in 2019):

Validate that ultrafast TOF can mitigate the blur induced by detector size

The beginning

Goal (back in 2019):

Validate that ultrafast TOF can mitigate the blur induced by detector size

Role of APA:

Demonstrate that the results were not due to numerical artifacts

The beginning

Spatial resolution achieved with 2-mm FWHM TOF	Theoretical instrumental spatial resolution limit	Theoretical FWHM of factors not modelized in the system matrix
---	---	--

The beginning

Sanity check: GateBenchmarks

GateBenchmarks:

Repository of GATE macros built to ensure that various functionalities are working correctly

Sanity check: GateBenchmarks

GateBenchmarks:

Repository of GATE macros built to ensure that various functionalities are working correctly

t_19acollinearity:

Test created to validate the implementation of acollinearity

Sanity check: GateBenchmarks

Result of t_19acollinearity with GATE 9.2

Understanding APA

Response function of APA:

Gaussian distribution with a ${\approx}0.4^\circ$ $FWHM^1$

¹Moses, "Fundamental limits of spatial resolution in PET".

²Colombino, Fiscella, and Trossi, "Study of positronium in water and ice from 22 to -144 °C by annihilation quanta measurements".

Understanding APA

Response function of APA:

Gaussian distribution with a $\approx 0.4^{\circ}$ FWHM¹

Trivia:

Estimated from water at 20°C (significantly sharper at $-144^{\circ}C)^2$

¹Moses, "Fundamental limits of spatial resolution in PET".

²Colombino, Fiscella, and Trossi, "Study of positronium in water and ice from 22 to -144 °C by annihilation quanta measurements".

Conclusion

Understanding APA

Understanding APA

So... deviation or magnitude?

Origin:

Positronium (ortho/para) vs non-zero kinetic energy vs laboratory frame

So... deviation or magnitude?

Origin:

Positronium (ortho/para) vs non-zero kinetic energy vs laboratory frame

Conclusion?

Theoretical particle physics is complex

So... deviation or magnitude?

¹Colombino, Fiscella, and Trossi, "Study of positronium in water and ice from 22 to -144 °C by annihilation quanta measurements".

So... deviation or magnitude?

¹Shibuya et al., "Annihilation photon acollinearity in PET: volunteer and phantom FDG studies".

So... deviation or magnitude?

¹Toussaint et al., <u>A rewriting of the relation between the acolinearity of annihilation photons and their energy in the context of positron emission tomography</u>.

So... deviation or magnitude?

Conclusion:

APA deviation follows a 2D Gaussian

Implementation of APA in GATE: a historical review

• At the time of GATE creation, APA, in the context of PET, is not available in Geant4

Implementation of APA in GATE: a historical review

- At the time of GATE creation, APA, in the context of PET, is not available in Geant4
- GATE introduced the G4PositronAnnihilation physics process to accounts the $\gamma\gamma$ non-colinearity (GATE v6.2)

Implementation of APA in GATE: a historical review

- At the time of GATE creation, APA, in the context of PET, is not available in Geant4
- GATE introduced the G4PositronAnnihilation physics process to accounts the $\gamma\gamma$ non-colinearity (GATE v6.2)
- Added to Geant4 in version 10.7, released in 2022
 - Release Notes: "fixed problem seen in the rare case (...) contributes to a small non-collinearity of the [annihilation photons], detectable and significant in PET."

Implementation of APA in GATE: a historical review

- At the time of GATE creation, APA, in the context of PET, is not available in Geant4
- GATE introduced the G4PositronAnnihilation physics process to accounts the $\gamma\gamma$ non-colinearity (GATE v6.2)
- Added to Geant4 in version 10.7, released in 2022
 - Release Notes: "fixed problem seen in the rare case (...) contributes to a small non-collinearity of the [annihilation photons], detectable and significant in PET."
- So... end of the story? Not so fast!

Implementation of APA in GATE: a historical review

APA in GATE prior to version 10.0

Effect on PET simulation: does it matter?

Context:

- Scanner diameter: 80 cm
- APA: 0.59° FWHM (GATE hard-coded value)
- Detector width: 0.5 mm

Theoretical instrumental spatial resolution:

2.1 mm

Conclusion

Effect on PET simulation: does it matter?

GaussMag, 70 it.

Theoretical instrumental spatial resolution: 2.1 mm

Conclusion

Effect on PET simulation: does it matter?

GaussMag, 70 it.

Theoretical instrumental spatial resolution: 2.1 mm

Effect on PET simulation: does it matter?

Theoretical instrumental spatial resolution: 2.1 mm

Effect on PET simulation: does it matter?

Theoretical spatial blur induced by APA at the center of a PET scanner

¹Thompson, Moreno-Cantu, and Picard, "PETSIM: Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems".

²España et al., "PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation".

³Jan et al., "GePEToS: a Geant4 Monte Carlo simulation package for positron emission tomography".

⁴Arce et al., "Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface".

⁵Pfaehler et al., "SMART (SiMulAtion and ReconsTruction) PET: an efficient PET simulation-reconstruction tool".

⁶Toussaint et al., "On the implementation of acollinearity in PET Monte Carlo simulations".

- Not unique to GATE; observed it in all PET simulation software I was able to access
 - e.g., $PETSIM^1$, $PeneloPET^2$, $GePEToS^3$, $GAMOS^4$ and $SMART-PET^5$
 - So. . . spread the word!

¹Thompson, Moreno-Cantu, and Picard, "PETSIM: Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems".

²España et al., "PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation".

³Jan et al., "GePEToS: a Geant4 Monte Carlo simulation package for positron emission tomography".

⁴Arce et al., "Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface".

⁵Pfaehler et al., "SMART (SiMulAtion and ReconsTruction) PET: an efficient PET simulation-reconstruction tool".

⁶Toussaint et al., "On the implementation of acollinearity in PET Monte Carlo simulations".

- Not unique to GATE; observed it in all PET simulation software I was able to access
 - e.g., $PETSIM^1$, $PeneloPET^2$, $GePEToS^3$, $GAMOS^4$ and $SMART-PET^5$
 - So...spread the word!
- Incorrect implementation of APA in GATE 9.4 and previous
 - If you can compile the program, two solutions are proposed in⁶

¹Thompson, Moreno-Cantu, and Picard, "PETSIM: Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems".

 $^{^2}$ España et al., "PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation".

³Jan et al., "GePEToS: a Geant4 Monte Carlo simulation package for positron emission tomography".

⁴Arce et al., "Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface".

⁵Pfaehler et al., "SMART (SiMulAtion and ReconsTruction) PET: an efficient PET simulation-reconstruction tool".

⁶Toussaint et al., "On the implementation of acollinearity in PET Monte Carlo simulations".

- Not unique to GATE; observed it in all PET simulation software I was able to access
 - e.g., PETSIM¹, PeneloPET², GePEToS³, GAMOS⁴ and SMART-PET⁵
 - So. . . spread the word!
- Incorrect implementation of APA in GATE 9.4 and previous
 - If you can compile the program, two solutions are proposed in⁶
- Available soon in GATE 10
 - Geant4 implementation can be activated for ion and positron sources
 - It will be available for GenericSource soon[™]
 - Known as back-to-back prior to GATE 10

 $^{^{1}}$ Thompson, Moreno-Cantu, and Picard, "PETSIM: Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems".

 $^{^2}$ España et al., "PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation".

³Jan et al., "GePEToS: a Geant4 Monte Carlo simulation package for positron emission tomography".

⁴Arce et al., "Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface".

⁵Pfaehler et al., "SMART (SiMulAtion and ReconsTruction) PET: an efficient PET simulation-reconstruction tool".

⁶Toussaint et al., "On the implementation of acollinearity in PET Monte Carlo simulations".

Mea culpa

Tests are importants

- Enable quick sanity checks
- Ensure that code refactoring and updates do not introduce any issues

Mea culpa

Tests are importants

- Enable quick sanity checks
- Ensure that code refactoring and updates do not introduce any issues
- GATE 10 beta already has 80+ types of tests (Hope I am not spoiling it)

Mea culpa

⁷Shibuya et al., "Annihilation photon acollinearity in PET: volunteer and phantom FDG studies".

Mea culpa

The second golden rule of debugging⁷:

When you're sure that everything you're doing is right, and your program still doesn't work, one of the things you're sure of is wrong

⁷Cooper, Oh! Pascal!

Talking about wrong assumption...

Talking about wrong assumption...

Ultrafast TOF vs acolinearity at M-08-062

Link to the poster

