

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR MEDIZINTECHNIK

GATE Activities @IMT/UzL

Hong Phuc Vo¹, Jorge Roser¹, Christian Pommranz², Jona Kasprzak¹

¹ Nuclear Imaging Group - Prof. Dr. Magdalena Rafecas
 Institute of Medical Engineering, Universiät zu Lübeck
 ² Institut für Astronomie und Astrophysik Tübingen, University of Tübingen

Contents

- 1. MERMAID: small aquatic animal PET
- 2. Breast PET/MRI Insert Prototype for a Clinical Whole-Body PET/MRI Scanner (in collaboration with University of Tübingen)
- 3. Imaging with Compton cameras for range verification in proton therapy

ledicine nflammation

MERMAID: Small aquatic animal PET

Motivation: Why zebrafish imaging?

Small size, easy to keep, high reproduction rate \rightarrow inexpensive compared to mice and rats

High genetic similarity to mammals

Transparent embryos \rightarrow valuable model organisms for biomedical research

Increasing interest in positron emission tomography (PET) imaging of adult zebrafish (non-transparent)

MERMAID Project

(Multi-Emission Radioisotopes-Marine Animal Imaging Device)

Current prototype

MERMAID-v1:

- 4 existing modules:
- 16x8 LYSO crystal matrix
- Crystal size: 1.12 x 1.12 x 15 mm3
- One-to-one readout

Limitation:

- Long crystal and small scanner radius
- Lack of depth-of-interaction (DOI)

→ parallax error

Long term goal

implement a step-by-step system upgrade towards a cost-effective solution

Digital zebrafish phantom Pipeline

M Zvolský et al 2022 Phys. Med. Biol. 67 175005

Digital zebrafish phantom

Detailed mapping for each organ using voxelized phantom

STL Volumes of:

- 1. Skin & bones (transparent gray)
- 2. Intestinal contents & spinal cord (pink)
- 3. Swim bladders (blue)
- 4. Intestine (ochre)
- 5. Gonads (light blue)
- 6. Kidney (green)
- 7. Liver (dark purple)
- 8. Pharynx (orange)
- 9. Heart (dark red)
- 10. Gills (magenta)
- 11. Mid- and hindbrain (yellow)
- 12. Forebrain (dark blue)
- 13. Eyes(red)

M Zvolský et al 2022 Phys. Med. Biol. 67 175005

Digital zebrafish phantom

Activities distribution using

Currently using *confine* option.

Future plan: develop a script to generate and modify each organ independently as voxelized phantom

M Zvolský et al 2022 Phys. Med. Biol. 67 175005

Why the need of upgrade?

MERMAID-v2 (next upgrade):

- Adding two new modules:
- 4 layers of 8 axially-oriented LYSO crystals (2.4 x 2.4 x 28.8 mm3)
- Dual readout on both side to provide continuous information with σ_{axial} = 3.5 mm and σ_{radial} = 1.2 mm
- Layer number provides DOI

MERMAID-v2 configuration. Left: transaxial view; Right: axial view

Goal of this work

Study of image performance through simulations and adapted reconstruction to assess potential benefits of new modules

Monte-Carlo Simulation

- Both systems are simulated using GATE¹, v9.1
- Acquisition time: 20 minutes, including 3-step rotation for both scanners.

Modified version of NEMA NU4 IQ phantom²

- Downscaled by factor of 0.6
 → size of zebrafish
- Modified cylinder region
 - \rightarrow emulate active lesion with background (5:1 activity concentration)
- Water-filled, back-to-back photons

¹ D. Sarrut et al., "Advanced Monte-Carlo simulations of emission tomography imaging systems with GATE," Phys Med Biol, 66, 881, 2021. ² NEMA standard publication NU4-2008: performance measurements of small animal positron emission tomographs. National Electrical Manufacturers Association, Rosslyn, VA, 2001.

Recovery coefficient

- Both system able to reconstruct 4 out of 5 rods
- 0.6-mm rod is only visible in MERMAID-v2
- With no DOI in MERMAID-v1, rods' size are smaller than their true size
 - \rightarrow solved by MERMAID-v2
- Recovery coefficient (RC) shows that MERMAID-v2 outperforms MERMAID-v1 across all radii

Vo, H., Seeger, S., Werner, J. and Rafecas, M.: Towards Full-body Small Aquatic Animal PET: a Simulation Study of MERMAID-v2, 1–1, 2023, DOI: 10.1109/NSSMICRTSD49126.2023.10338525

Universitätsklinikum Tübingen

Breast insert prototype for whole-body PET/MRI scanner

·SISS

Breast insert for commercial PET/MRI scanner

Motivation

- Breast cancer leading cause of cancer mortality for women
- Limitation of the image quality impede accurate identification of small structures (intratumoral, lesions)
- \rightarrow Motivation: Improvement of Accuracy for Breast Imaging

3T PET/MRT Scanner Biograph mMR

Breast insert for commercial PET/MRI scanner

licensed under CC BY-NC-ND 3.0)

Motivation

Goal: Improvement of PET breast imaging → Integration of breast insert in breast coil and Biograph mMR

Coincidences:

Total-body PET Scanner

Consistent resolution (Total-body)

Breast Insert Ш.

Higher resolution (Breast) Potential for higher performance

Mixed coincidences

Increase resolution + Thorax

https://www.siemens-healthineers.com/fr/magnetic-resonance-imaging/mr-pet-scanner/biograph-mmr

Breast insert for commercial PET/MRI scanner

Motivation

Pommranz et al, "Design and performance simulation studies of a breast PET insert integrable into a clinical whole-boy PET/MRI scanner, PMB, 2023

Study of improving axillary lymp nodes resolution

Towards enhancing axillary lymp nodes

Imaging with Compton cameras for range verification in proton therapy

SISS

Proton therapy

- Particle therapy: cancer treatment technique using proton or heavier ion beams
 - Distinct depth-dose deposition pattern (Bragg peak)
 - Potential higher distribution conformity & reduced healthy tissue-to-tumor dose ratio
 - Disadvantage: high sensitivity to range deviations
 (caused e.g. by changes in the anatomy of the patients)
 - Need for an online range verification method

(b) "uncertain" situation

Range verification

- Candidate for online range verification method: Prompt Gamma (PG) imaging
 - Gamma-rays generated as a consequence of the nuclear inelastic interactions of the beam particles inside the patient
 - Nearly-instantaneous emission (no biological washout degradation)
 - PG spatial emission distribution is correlated to the depthdose distribution.
 - Polychromatic spectrum

PG spectrum obtained with a GATE Phase Space actor after proton irradiation on a RW3 phantom

¹JM Verburg et al. "Energy- and time-resolved detection of prompt gamma-rays for proton range verification" Phys. Med. Biol. 58 L37, 2013

Range verification

- Candidate for online range verification method: Prompt Gamma (PG) imaging
 - Gamma-rays generated as a consequence of the nuclear inelastic interactions of the beam particles inside the patient
 - Nearly-instantaneous emission (no biological washout degradation)
 - PG spatial emission distribution is correlated to the depthdose distribution.
 - Polychromatic spectrum, anisotropic emission (implemented?)
 - Detetection candidate: <u>Compton cameras</u>

Poster M-08-347 ^IJM Verburg et al. "Energy- and time-resolved detection of prompt gamma-rays for proton range verification" Phys. Med. Biol. 58 L37, 2013

GATE simulations @ IMT/UzL

- Simulation in two steps
 - First step: GATE simulation of proton beam on heterogeneous phantom
 - Hadronic physics list
 - Prompt-gammas stored using Phase
 Space actor

GATE simulations @ IMT/UzL

- Simulation in two steps
 - Second step: PGs stored in Phase Space actor used as a source to irradiate Compton camera
 - Electromagnetic physics list
 - Prompt-gammas stored using Phase Space actor
 - Compton camera module actor
 ... but only <u>storing the Singles</u>
 - GATE coincidence sorter not working for us (much less coincidences than expected)
 - Related to the fact that same eventID hits have potentially very different times
 - Potentially affecting other applications (e.g. in-beam PET)?
 - Potentially solved in GATE 9.4?

Seite 22 30.10.2024 © Universität zu Lübeck

¹J Kasprzak et al. "Regularized Origin Ensemble with a beam prior] {Regularized Origin Ensemble with a beam prior for range verification in particle therapy with Compton-camera data" Submitted to Phys. Med. Biol., 2024

Thank you for your attention!

S.SISS