Violation de CP et étude de l'angle alpha du triangle d'unitarité dans Babar

Marc Escalier, post-doc 2^e année Dapnia/SPP/Saclay

Pourquoi étudier la violatio D'où venons-nous ? Pourquoi existons-nous ?

qté/106 H

Doutockam (2H

History of the Universe

1965, Penzias, Wilson, 3K ρ mat. ord. Asymétrie matière/antimatière

> 1967, Sakharov: violation CP

Illustration de violation de CP violation de Ct

oie blanche:

La violation de CP

Q

 $(x,y,z) \rightarrow (-x,-y,-z)$

→-Q

 \rightarrow -t

- Conjugaison C:
- Parité : **P**
- Inversion temps: **T** t

• indirecte (« mélange »)

• interf. entre désintégrations avec et sans mélange

Histoire violation CP

1949, Powell puzzle τ/θ

ViolationP

1954, Lüders, Pauli, Schwinger : CPT conservé

1956, Lee, Yang, tester conservation P (<1957, P, C, T <u>dites</u> « conservés »)

1957: Wu, violation P dans ⁶⁰Co

<1964: CP « conservé »: CP pair: $K_S \rightarrow \pi^+ \pi^-$, CP impair: $K_L \rightarrow \pi^+ \pi^- \pi^0$

1964, Christenson, Cronin, Fitch, Turlay

violation CP indirecte/mélange dans kaons neutres $K_L \rightarrow \pi^+ \pi^- (\sim 10^{-3})$

>1964, CPT conservé, C, P, CP violé par interaction faible

ÇP: principe fondamental ou « accident » ?

• fondamental → <u>indépendamment du mélange</u>

1998: violation T dans kaons neutres CPLEAR (1993), 1999: violation CP directe dans kaons neutres (NA31, E731), KTEV, NA48

• fondamental → <u>d'autres systèmes</u>

1981, Bigi, Carter, Sanda: prédiction $\mathcal{C}P >>$ dans interférence désintégration $\mathbf{B} \rightarrow J/\psi K_s$ avec et sans mélange, possibilité mesure sin 2 β

1987, Oddone, proposition usines à **B** asymétriques (f(t)) (1^{ères} collisions, 1999)

2001: violation CP interférence, B neutres $B^0 \rightarrow J/\psi K_S$ 2004: violation CP directe dans B neutres $B^0 \rightarrow K^+\pi^-$

Babar, Belle Babar, Belle $_{6/53}$ Belle

 \heartsuit

Principales mesures de violation de CP

1973: Kobayashi, Maskawa, mélange quarks : (+Cabbibo 1963)

 $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$ Présence d'une phase \rightarrow violation CP

-1.5

-0.5

γ

0.5

p

1.5

1

→nouvelle physique ?

 γ & α : modes rares, (plus de stat)

Expérience Babar

formalisme

- Détecteur de vertex (SVT)
- Chambre à dérive (DCH)
- Détecteur Cerenkov (DIRC)
- Calorimètre électromagnétique (EMC)
- Aimant supraconducteur
- Retour de flux instrumenté (IFR)

Signal selection

• Hadron ID $\rightarrow \pi/K$ separation

+dE/dx using DCH

- Kinematical identification with
 - -Beam energy substituted mass -Energy difference

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$
$$\Delta E = E_B^* - E_{\rm beam}^*$$

• Event-shape variables: neural network

+mass-helicities

b→cc̄s charmonium dominé arbre

b→ccd charm et charmonium présence pingouin b→dds, sss dominé pingouin dominé pingouin

 $J/\psi K_{S}^{0} \text{ (canal en or)}$ $\psi(2S)K_{S}^{0}, \chi_{c1}K_{S}^{0}, \eta_{c}K_{S}^{0}$ $J/\psi K_{L}^{0}$ $J/\psi K^{*0}(K^{*0} \to K_{S}^{0}\pi^{0})$ $D^{*+}D^{-}, D^{+}D^{-} \qquad \phi K^{0}, K^{+}K^{-}K^{0}_{S},$ $J/\psi\pi^{0}, D^{*+}D^{*-} \qquad K^{0}_{S}K^{0}_{S}K^{0}_{S}, \eta'K^{0}, K^{0}_{S}\pi^{0},$ $\omega K^{0}_{S}, f_{0}(980)K^{0}_{S},$ $K^{0}_{S}K^{0}_{S}, \rho K^{0}_{S}$

nouveau: $B^0 \rightarrow \rho^0(770) K_S^0$

15/53

BR importants (10⁻³-10⁻⁴)

 $\sin 2\beta = 0.710 \pm 0.034 \pm 0.019$ $|\lambda| = 0.932 \pm 0.026 \pm 0.017$

Ambiguités d'angle

soit ϕ un angle (α , β , γ)

Soit une mesure $|\sin 2\phi|=x$ **4 solutions**: $\phi=z$, $\phi=z+\pi$, $\phi=\pi/2-z$, $\phi=3\pi/2-z$ $\alpha+\beta+\gamma=\pi \rightarrow 16$ solutions à γ sachant (α , β)

95% CL

supprimer ambiguités:

- signe(cos 2ϕ) \rightarrow supprime ambiguité $\pi/2-\phi$
- signe(sin ϕ) \rightarrow supprime ambiguité $\pi + \phi$

• analyse f(t) $B \rightarrow J/\psi K^{*0} (K^{*0} \rightarrow K_s \pi^0)$ • $B^0 \rightarrow D^0 \pi^0$

sin2 β from charmless B decays

- Gronau, London, Wyler (GLW), 1991: $(D^0/\overline{D}^0)_{CP} K^{+-}$
- Aleksan, Dunietz, Kayser (ADK), 1992
- Atwood, Dunietz, Soni (ADS), 1997: K⁺K⁻ π^{+-}
- GGSZ (Giri, Grossman, Soffer, Zupan), «Dalitz»: $(K_S^0\pi^+\pi^-)K^+$
- sin (2 β + γ) (analyse en temps de B \rightarrow D^(*) π)

GLW, ADS: comparer désintégrations $B \rightarrow D^{(*)}K$ avec V_{cb} et V_{ub} ^{19/53}

Propre théoriquement (pas de pingouin), pas d'incertitudes hadroniques. r_B faible \rightarrow faible sensibilité à γ . Br faibles: stat limitée. Ambiguité d'ordre 8 sur γ

Atwood, Dunietz, Soni hep-ph/9612433, hep-ph/0008090

Inconvénient de GLW: r_B faible $r_B = |A(B \rightarrow \overline{D}^0 K^{-})/A(B \rightarrow D^0 K^{-})|$

ADS

Idée: rendre ces rapports plus proches:

B⁻→D⁰K⁻ (favorisé) & D⁰→K⁺π⁻ supprimé B⁻→D⁰K⁻ (supprimé) & D⁰→K⁺π⁻ favorisé B⁺→D⁰K⁺ (favorisé) & D⁰→K⁻π⁺ supprimé B⁺→D⁰K⁺ (supprimé) & D⁰→K⁻π⁺ favorisé

Résultats y

Violation de CP dans interférence entre désintég. avec & sans mélange désintégration B^0 $\lambda = \frac{q}{p} \frac{\langle f | H | M^0 \rangle}{\langle f | H | M^0 \rangle}$ *≠* conventions mélange f_{CP} désintégration $a_{CP}(t) = \frac{|\langle f|H|M_{phys}^{0}(t)\rangle|^{2} - |\langle f|H|\bar{M}_{phys}^{0}(t)\rangle|^{2}}{|\langle f|H|M_{phys}^{0}(t)\rangle|^{2} + |\langle f|H|\bar{M}_{phys}^{0}(t)\rangle|^{2}}$ B(Si |q/p|~1 (vrai pour B, faux pour K) $\Gamma_{B^0}(\Delta t)$ $a_{CP}(t) = C_f \cos \Delta m t + S_f \sin \Delta m t$ S=0.7 $\Gamma_{\bar{B}^0}(\Delta t)$ $A_{CP}(\Delta t$ $S_f = \frac{-2Im\lambda}{1+|\lambda|^2}$ $C_f = \frac{1 - |\lambda|^2}{1 + |\lambda|^2}$ CP directe $\equiv \frac{\Gamma_{\bar{B}^0}(\Delta t) - \Gamma_{B^0}(\Delta t)}{\Gamma_{\bar{B}^0}(\Delta t) + \Gamma_{B^0}(\Delta t)}$ CP mélange $A = -C (Belle) = \mathcal{S} \sin \Delta m \Delta t + \mathcal{A} \cos \Delta m \Delta t$ Babar/Belle: ≠ conventions

tree: $\Delta I = 1/2$; 3/2

penguin: $\Delta I=1/2$

strategy: use isospin relationship to remove penguin pollution

$$\langle \pi^{+}\pi^{-}|H_{W}|B^{0}\rangle = -\sqrt{\frac{1}{3}}A_{1/2,0} + \sqrt{\frac{1}{6}}A_{3/2,2} - \sqrt{\frac{1}{6}}A_{5/2,2} \\ \langle \pi^{0}\pi^{0}|H_{W}|B^{0}\rangle = \sqrt{\frac{1}{6}}A_{1/2,0} + \sqrt{\frac{1}{3}}A_{3/2,2} - \sqrt{\frac{1}{3}}A_{5/2,2} \\ \langle \pi^{+}\pi^{0}|H_{W}|B^{+}\rangle = \frac{\sqrt{3}}{2}A_{3/2,2} + \sqrt{\frac{1}{3}}A_{5/2,2} \\ \frac{1}{\sqrt{2}}\langle \pi^{+}\pi^{-}|H_{W}|B^{0}\rangle + \langle \pi^{0}\pi^{0}|H_{W}|B^{0}\rangle = \langle \pi^{+}\pi^{0}|H_{W}|B^{+}\rangle$$

$$\rightarrow \text{triangle only if } A_{5/2} = 0$$

 $(A_{5/2} = NP)$

(A_{1/2}=penguin)

8-fold ambiguity

• triangles flip up/down:4

• $\sin 2\alpha : 4$ $\phi = z, \phi = z + \pi, \phi = \pi/2 - z, \phi = 3\pi/2 - z$

26/53

227 10⁶ BB

BR= $(1.17\pm0.32\pm0.10)10^{-6}$ C₀₀=-0.12±0.56±0.06 61±17±5 signal, 5.0 σ

BR= $(5.8\pm0.6\pm0.4)10^{-6}$ a_{CP}=-0.01±0.10±0.02 379±41 signal

PRL 94, 181802 (2005)

B**→**ρρ

 $\rho^+\rho^-$ more difficult:

ρ

 ρ^+

- 2 π^0 in final state (\rightarrow résolution vertex dégradé, + de SxF)
- wide ρ resonance \rightarrow more background
- 3 polarization states w/ different CP eigenvalues

 \rightarrow separate contrib to avoid dillution

eventually best mode:

 $A_{\perp} = (H^+ - H^-)/\sqrt{2}$

- BR~6 x those from $B \rightarrow \pi \pi$
- Penguin pollution much small/B $\rightarrow \pi \pi$
- f_L~almost 100 % (pure CP-event state)

29/53

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \pi^+ \pi^- \pi^0$ Snyder-Quinn, PRD 48, 2139 (1993)

dominant decay $B^0 \rightarrow \rho^+ \pi^-$: not a CP eigenstate isospin analysis not viable: too many amplitudes:

 $B^{0} \rightarrow \rho^{+}\pi^{-}, B^{0} \rightarrow \rho^{-}\pi^{+}, B^{0} \rightarrow \rho^{0}\pi^{0}, B^{+} \rightarrow \rho^{+}\pi^{0}, B^{+} \rightarrow \rho^{0}\pi^{+}$ and charge conjugates

better approach: Time-dependent Dalitz analysis:

- simultaneous fit of α , T, P amplitudes
- no ambiguity on α (unlike isospin analysis)

Babar is working fine

~400 fb⁻¹ 2008: expected ~ 1 ab⁻¹=1000 fb⁻¹ \rightarrow many physics potential (rare modes) _{33/53}

Motivations:

- test prédictions théoriques
- modes jamais observé $(K^{*0}\rho^0/f_0)$
- contrainte sur α , γ : plus lointain

Mesurer

- rapport d'embranchement
- fraction de polarisation longitudinale f_L
- asymmétrie directe de CP A_{CP}

• B bruit de fond non résonant~600 $\bullet K^+ \pi^- \pi^+ \pi^-$ • K^{*0} $\pi^+\pi^ \hookrightarrow K^+\pi^ \bullet K^+\pi^ \rho^0$ $\hookrightarrow \pi^+\pi^ \bullet K^{**+}$ π^{-} $\hookrightarrow {\rm K}^{+}\pi^{-}\pi^{+}$ $\bullet K^{*0}$ $f_0(1370)$ $\hookrightarrow K^+\pi^ \hookrightarrow \pi^+\pi^ \bullet K^+\pi^$ $f_0(980)$ $\hookrightarrow \pi^+\pi^ \bullet K^+\pi^$ $f_0(1370)$ $\hookrightarrow \pi^+\pi^-$

bruit de fond réductible~7700

particules finales ≠ imitant certaines pdfs

charmé~7000 non charmé~700

S/B~0.4 %

variables discriminantes

- m_{ES} , ΔE : S/(B, continuum), variables forme (nno): (S, B)/continuum
- Mass-helicity(K*,ρ): signal- B non-resonant B

efficacités

• 5.22 <m<sub>ES<</m<sub>	5.29 GeV								
 -0.15<∆E<0 -0.2<nno<1< li=""> 0.7711 <m< li=""> </m<></nno<1<>	(K*0) < 1.0211				K ^{*0} ρ ⁰ analysis		K ^{*0} ρ ⁺ analysis		
• 0.52 <m<sub>V(ρ • -0.95<cos th="" θ<=""><td>⁰)<1.1461 GeV ∂(K*)<1</td><td colspan="3">Longitudinal Signal Efficiency (SxF included)</td><td colspan="2">17.3%</td><td colspan="2">10.6%</td></cos></m<sub>	⁰)<1.1461 GeV ∂(K*)<1	Longitudinal Signal Efficiency (SxF included)			17.3%		10.6%		
 -0.95<cos θ(ρ<sup="">0)<0.95</cos> 			Transverse Signal Efficiency (SxF included)			27.0%		17.9%	
	lor	<mark>linal signal</mark>			Transverse signal				
	Global Self-X-Feed rate	Fraction of true K ^{*0}		Fraction of true $\rho^{(0,+)}$	Global Self-X- rate	Feed	Fraction of true K ^{*0}	Fraction of true $\rho^{(0,+)}$	
Κ *0 ρ ⁰	21.9%	21.9% 93		5% 82.3%		%	97.3%	95.3%	
$K^{*0} \rho^+$	23.4 %	95.	.5 %	79.7 %	12.3	%	98.4 %	89.1 % 40/53	

Systématiques

dominantes: bck non résonants, forme pdfs

SYSTEMATICS for $K^{*0}\,\rho^+$

source	ΔBR
π^0 reco	3.0%
Track reco	3.9%
B counting	1.1%
Sum efficiency	5.0%

Source	∆BR (10 ⁻⁶)	ΔfL	
Efficiency	± 0.48	± 0.000	
PID	± 0.10	± 0.002	
εLg/εTr (±3.5%)	± 0.00	± 0.009	
SXF rates	± 0.05	± 0.001	
PDFs Shapes	± 0.71	± 0.029	
Non resonant	+ 1.16	+ 0.027	
Backgrounds	- 1.21	- 0.030	
Nb of B bckgs	± 0.17	± 0.008	
TOTAL	+1.46	+0.041	
	-1.50	-0.043	
Rounded up	(± 1.5)	(± 0.04)	

Résultats (Phys. Rev. Lett. **97**, 201801 (2006))

 $A_{CP} \equiv \frac{N(\bar{B}^{0} \to K^{*0}\rho^{0}) - N(B^{0} \to \overline{K}^{*0}\rho^{0})}{N(\bar{B}^{0} \to K^{*0}\rho^{0}) + N(B^{0} \to \overline{K}^{*0}\rho^{0})} + N(B^{0} \to \overline{K}^{*0}\rho^{0}) = [-0.17\pm0.28 \text{ (stat)}\pm0.02 \text{ (syst)}] \\ \bullet a_{CP}(K^{*0}f_{0}) = [-0.01\pm0.16(\text{stat)}\pm0.02 \text{ (syst)}] \\ \bullet a_{CP}(K^{*0}\rho^{+}) = [-0.01\pm0.16(\text{stat})\pm0.02 \text{ (syst)}]$

- $K^{*0}\rho^0$ pour la 1^{ère} fois, rapport $K^{*0}\rho^+/K^{*0}\rho^0$ compatible avec isospin
- f_L ~compatible K^{*0} ϕ
- Asymétries faibles

Background S/B~0.15 %

• Continuum~58000 (e⁻e⁺→u, d, s, c)

$$\frac{\%}{(\pi^{+}\pi^{-})} (\pi^{+}\pi^{-})$$

The maximum likelihood fit

Unbinned extended maximum likelihood fit

$$-\ln L = \sum_{tag \ cat \ i} \left(N_{sig} \epsilon_{tag_i}^{sig} \prod_{obs_j} PDF_{sig_j} + N_{cont} \epsilon_{tag_i}^{cont} \prod_{obs_j} PDF_{cont_j} + \sum_{B \ bck_k} N_B^k \sum_{bck} \epsilon_{tag_i}^{Bbck_k} \prod_{obs_j} PDF_B^k \sum_{bck_j} \right)$$

 $PDF_{signal} = f_L \left[(1 - SxF_{Lg})PDF_{Lg}^{pur} + SxF_{Lg}PDF_{Lg}^{SxF} \right] + (1 - f_L) \left[(1 - SxF_{Tr})PDF_{Tr}^{pur} + SxF_{Tr}PDF_{Tr}^{SxF} \right]$

Symmetrization for appropriate backgrounds

$$PDF_{sym} = \frac{PDF(\pi_{1}^{+}\pi_{1}^{-}, \pi_{2}^{+}\pi_{2}^{-}) + PDF(\pi_{1}^{+}\pi_{2}^{-}, \pi_{1}^{-}\pi_{2}^{+})}{2}$$
Time decay distribution
$$\mu \neq \text{tagging efficiency}$$

$$F_{Q_{tag}}^{\rho^{0}\rho^{0}}(\Delta t) \sim \frac{e^{-|\Delta t|/\tau}}{4\tau} \{1 - Q_{tag}\Delta w + Q_{tag}\mu(1 - 2\omega) + (Q_{tag}(1 - 2w) + \mu(1 - Q_{tag}\Delta \omega)) [S \sin(\Delta m_{d}\Delta t) - C \cos(\Delta m_{d}\Delta t)]\}}$$

$$+1: B^{0}, -1: B^{0}$$

 $\Delta \omega \neq$ of mis-tagging frac (B⁰; B⁰)

 $(\omega, \Delta \omega) \longrightarrow \begin{cases} \text{mistagging fraction } B^0 \\ \text{mistagging fraction } B^0 \end{cases}$

47/53

Stratégie analogue à $K^*\rho$

Efficacités et taux de mauvaise reconstruction

- 5.245<m_{ES}<5.29 GeV
- -0.085 GeV<ΔE<0.085 GeV
- -2<nno<2
- $0 < |\cos \theta| < 0.98$
- 0.55<m_v<1.05 GeV

 $\rho^{0}\rho^{0}$ Lg : Eff : 22.11±0.08 % SxF:17.6±0.07 % $\rho^{0}\rho^{0}$ Tr : Eff : 27.28±0.08 % SxF:3.08±0.03 % $\rho^{0}f^{0}$:Eff:24.71±0.02%,SxF:12.78±0.09% f^{0}f^{0}:27.19±0.08%, SxF: 7.95±0.05%

Pdfs for continuum Mass-helicity:

- Use GSB from run1-5+offres
- Use a 2D parametrisation A RecPlot of A ReePlot of "\dt" A RooPlot of "AE o Plot of "neural network output: 6 yer is m_{ES} nnø 5120 0.796 Mean 2000 0.547 Δt Mean v 0.1364 RMS x RMS 0.9.8.7.6.5.4.3.20.1 00.55 0.6 0.65 0.7 0.75 0.8 0.85 0.90.95 5.2455.255.2555.265.265.275.2755.265.2855.29 0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.06 0 0.5 mes(B) (GeV/c ∆E(B) (GeV) At (ps A RooPlot of "V, mass RooPlot of "V, mass ReoPlot of "cos(0) $\cos \theta_1$ $\cos \theta_2$ \mathbf{m}_1 49/530.550.60.650.70.750.80.850.90.95 1 1.06 0.550.60.650.70.750.80.850.90.95 1 1.0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

osTheta

cos Theta'

Pdfs for pure signal Lg

50/53

Incertitudes

- B counting: (383.634 ± 2.211) 10⁶ BB \rightarrow 1.1% uncertainty on BR
- tracks: 1.3 % per track \rightarrow 5.2 %

 m_{ES} , ΔE (half)

variable	$\Delta N_{\rho^0\rho^0}$	Δf_L	ΔS_L	ΔC_L	$\Delta N_{\rho^0 f_0}$	$\Delta N_{f_0 f_0}$
m_{ES}	-3.40	-0.01	-0.07	0.01	1.45	-0.06

SxF rate	variable	$\Delta N_{\rho^0 \rho^0}$	Δf_L	ΔS_L	ΔC_L	$\Delta N_{\rho^0 f_0}$	$\Delta N_{f_0 f_0}$
	SxF	0.22	0.00	0.00	-0.00	-0.01	-0.00

+PDFs

+yields charmless

+efficacités tagging

+C et S dans $\rho^0 f^0$, $f^0 f^0$, $a1\pi$

+interférence alpi (Loïc Estève, [nouveau thésard Saclay])

Résultats

384 10⁶ BB

(Collaboration LBL, J. Hopkins, Saclay)

i) Analyse indépendente du temps

évidence (3,5 σ), pour la 1^{ère} fois Br($\rho^0 \rho^0$)=(1,07±0,33±0,19) x10⁻⁶ f_L=0,87±0,13±0,04 |Δα|<18°(68% CL) 100 ±32±17 $\rho^0 \rho^0$

PRL 98, 111801

dominant systematic: Interference w/ $a_1\pi$

Intérêt de mesurer C et S

Plan: mesures pour conférences été 2007

53/53

Conclusion/Perspectives

• $B \rightarrow K^{*0} \rho^{0/4}$

• $B \rightarrow \rho^0 \rho^0$

bcp de chemin parcouru depuis 1998 Davantage encore avec les futurs run6, ... \rightarrow 2008 (Babar ~1 ab⁻¹) Dans le Modele Standard, la violation de CP est expliquee par la presence de termes complexes dans la matrice CKM. L'unitarite de cette matrice impose l'existence d'un triangle (dit d'unitarite) dont les cotes et angles sont mesurees par les experiences. Apres une breve revue des analyses pour la determination des angles, je presenterai mon travail d'etude des canaux B0->K*0 rho0 et B0->rho0 rho0, permettant pour ce dernier d'ameliorer la determination de l'angle alpha

appendice

$$\begin{split} A(B^{-} \rightarrow D^{0}(K^{+}\pi^{-})K^{-}) &= abr_{D} \\ A(B^{-} \rightarrow \bar{D}^{0}(K^{+}\pi^{-})K^{-}) &= abr_{B}e^{i(\delta_{f}+\delta_{D})}e^{-i\gamma} \\ A(B^{+} \rightarrow D^{0}(K^{-}\pi^{+})K^{+}) &= abr_{B}e^{i(\delta_{f}+\delta_{D})}e^{i\gamma} \\ A(B^{+} \rightarrow \bar{D}^{0}(K^{-}\pi^{+})K^{+}) &= abr_{D} \end{split}$$
rapport suppr/ favor
$$\begin{split} r_{D} &= |A(D^{0} \rightarrow K^{+}\pi^{-})/A(D^{0} \rightarrow K^{-}\pi^{+})| \\ A(B^{+} \rightarrow \bar{D}^{0}(K^{-}\pi^{+})K^{+}) &= abr_{D} \end{split}$$

$$Br(B^{-} \to D(K^{+}\pi^{-})K^{-}) + Br(B^{+} \to D(K^{-}\pi^{+})K^{+}) = 2a^{2}b^{2}(r_{D}^{2} + r_{B}^{2} + 2r_{B}r_{D}\cos(\delta_{D} + \delta_{f})\cos\gamma)$$
$$Br(B^{-} \to D(K^{+}\pi^{-})K^{-}) - Br(B^{+} \to D(K^{-}\pi^{+})K^{+}) = 4a^{2}b^{2}r_{B}r_{D}\sin(\delta_{D} + \delta_{f})\sin\gamma$$

Deux quantités mesurant y

$$A_{ADS} = \frac{Br(B^- \to D(K^+\pi^-)K^-) - Br(B^+ \to D(K^-\pi^+)K^+)}{Br(B^- \to D(K^+\pi^-)K^-) + Br(B^+ \to D(K^-\pi^+)K^+)} = \frac{2r_Br_D\sin(\delta_D + \delta_f)\sin\gamma}{r_D^2 + r_B^2 + 2r_Br_D\cos(\delta_D + \delta_f)\cos\gamma}$$

• R_{CP±}

$$R_{ADS} = \frac{Br(B^- \to D(K^+\pi^-)K^-) + Br(B^+ \to D(K^-\pi^+)K^+)}{[Br(B^- \to D^0(K^-\pi^+)K^-) + Br(B^+ \to \bar{D}^0(K^+\pi^-)K^+)]} = r_B^2 + r_D^2 + 2r_Br_D\cos(\delta_B + \delta_D)\cos\gamma$$

Silva-Wolfenstein method (SU(3))
SU(3) symmetry:
$$B^{0} \rightarrow K^{+}\pi^{-}, B^{0} \rightarrow \pi^{+}\pi^{-}$$

 $\Gamma(B^{0} \rightarrow \pi^{+}\pi^{-}) = |T^{+-}|^{2} + |P^{+-}|^{2} + 2|T^{+-}||P^{+-}| \cos (\beta + \gamma - \delta)$
 $\Gamma(B^{0} \rightarrow K^{+}\pi^{-}) = |T'^{+-}|^{2} + |P'^{+-}|^{2} - 2|T'^{+-}||P'^{+-}| \cos (\gamma + \epsilon' - \epsilon - \delta')$
 $\epsilon' = arg(-\frac{V_{us}V_{ud}^{*}}{V_{cs}V_{cd}^{*}}) \epsilon = arg(-\frac{V_{cb}V_{cs}^{*}}{V_{tb}V_{tb}^{*}})$
• $R = \frac{\Gamma(B^{0} \rightarrow K^{+}\pi^{-}) + \Gamma(\bar{B}^{0} \rightarrow K^{-}\pi^{+})}{\Gamma(B^{0} \rightarrow \pi^{+}\pi^{-}) + \Gamma(\bar{B}^{0} \rightarrow \pi^{+}\pi^{-})}$, from J\U03cb/K_s
 $= \frac{|T'^{+-}|^{2}}{|T^{+-}|^{2}} \frac{1 + r'^{2} + 2r'\cos(\alpha + \beta + \epsilon - \epsilon')\cos \delta'}{1 + r^{2} - 2r\cos\alpha\cos\delta}$ small
• $a_{CP}(\pi^{+}\pi^{-}) = -\sin 2(\alpha + \delta_{\alpha})$

 $\tan \delta_{\alpha} = \frac{r \sin \alpha}{1 - r \cos \alpha}$

 $\rightarrow \alpha$

58/53

advantage: easy to measure

« Trajectographe » de vertex (Silicon Vertex Tracker)

- $a_{CP} \rightarrow \Delta t$ (désintégrations) \rightarrow vertex 2 mésons, $\Delta z(B) \sim 260 \ \mu m$
- P_T traces chargées $P_{T:}$ 50-120 MeV (R⁻¹ trop \downarrow pour DCH)
- identification dE/dX (DCH)

Diffusion multiple : meilleure résolution couche internes $P_T < 100 \text{ MeV}$: n'atteint pas DCH ($\epsilon\uparrow$ pour Pt>180 MeV) \rightarrow SV**Tracker** $\sigma_z >> O(\Delta z/2) \rightarrow \sigma_z < 80 \mu m$, silicium à micropistes meilleure $\sigma_z \rightarrow$ reconnaissance motifs, reconstruction vertex, rejet bruit Limite par diffusion multiple \rightarrow couches internes 10-15 µm, externes: 30-40 µm

5 couches cylindriques 2 externes: en arche (couverture angulaire, angles incidence↓)

3 couches internes: 6 modules: paramètre impact
Faces internes: pistes ⊥faisceaux → position longitudinale (z) externes: pistes || faisceaux → angle azimutal (\$)
340 détecteurs silicium, 150000 canaux lecture, 90 % angle solide

Chambre à dérive (DCH)

- particules chargées (impulsion et angles) acceptance: 17.2°-152.6°
- 40 points de mesure par trace, $\sigma\!\!<\!\!140~\mu m$
- Avec SVT, reconstruction traces $P_T > 100 \text{ MeV}$
- reconstruire vertex déplacé (non dans SVT) \rightarrow bonne résolution longitudinale Identification particules (dE/dx) sépare π/K jusqu'à 700 MeV

- 1 fil capteur
 20 μm, alliage tungstène-rhénium Résistivité ↓, résistance mécanique ionisation gaz, avalanche seuil détection: 2 e⁻ (1 trace~22 e⁻)
 6 fils de champ
- 7104 cellules hexagonales, 11,9 x19,0 mm 10 super-couches (chacune 4 couches) \rightarrow jusqu'à 40 points de mesures Mesure 3D: angle stereo super-couches: alterne axiale, stereo (U-V) $\theta \sim [\pm 45 \text{ mrad}; \pm 76 \text{ mrad}]$ Axiales : angle courbure traces (impulsion) Stereo: en plus: position longitudinale

→ position longitudinale Résolution temporelle: 1 ns →/ $\frac{1}{4}$ µm

DIRC: (detection of Internally Reflected Cerenkov light)

Identification particules chargées, distingue $\pi^{+/-}/K$ (P_T:[0,7 GeV;4 GeV]), p (P>1.3 GeV) K→étiquetage saveur B (b→c→s) Rayonnement Cerenkov particule chargée β >1/n $\cos \theta_C = \frac{1}{\beta n}$ SVT+DCH: p→identification particule $1 - \beta^2$

4 x 1.225 m Synthetic Fused Silica Bars glued end-to-end

$$m^2 c^4 = \frac{1 - \beta^2}{\beta^2} p^2$$

radiateur 144 barres quartz (résistant radiations, longueur atténuation \uparrow , n \uparrow ,dispersion chromatique faible) lumière \rightarrow arrière détecteur Prisme: rabat photons trop grand angle (réduit PMT), angle 6 mrad prisme Ambiguïté parité réflexion _{63/53} Cuve à eau (Stand Off Box) Eau: indice proche quark, minimise perte réflexions quartz/eau photons→11000 PMT

Calorimètre électromagnétique

Gerbes électromagnétiques γ , π , η , position, énergie 20 MeV-9 GeV Identification e⁻ par E/p, permet de tagger B par lepton

Tonneau cylindrique, bouchon conique avant 5760 cristaux scintillation (48 colonnes suivant angle polaire) Cristaux CsI: bonne production lumière (50000 γ /MeV) Lumière scintillation lue par photodiodes silicium

65/53

like the filaments in composite wires, cables must be twisted to reduce coupling

1,5 T Cable Rutherford 10 km I=4600 A, hélium liquide 4.5 K Retour de champ pour protéger aimants Q2, Q4, Q5

Retour de flux instrumenté IFR(Instrumented Flux Return)

détecteur μ (étiquetage saveur B, désintégrations semi-leptoniques B) P_T>GeV

Détection hadrons neutres (K_L^0, n)

RPC: Resistive Plate Chamber

RPC: détec tent particule ionisante dans gaz→étincelle entre deux plaques

