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The importance of the forward dispersion relations (6.60) and (6.61) is
that, apart from the NN coupling constant, they contain only physically
measurable quantities. Re F(w;) can be obtained up to a sign by extrapola-
tion of the elastic cross section to the forward direction

2
Re F = \/d"(o) - (ﬁk‘fii) . : (6.64)
lab 47

dQ
The sign of Re Fis determined by the interference with Coulomb scattering.
The use of these relations therefore allows a determination of the mNN
coupling constant and also provides an important check on the validity of
dispersion relations. Using the available experimental data we find that the
relations are satisfied to a high degree of accuracy.

§ 2. Double Variable Dispersion Relations — The Mandelstam Representation

So far we have only examined the analytic properties of the elastic
scattering amplitude in terms of one of its variables at a time while keeping
the other variable fixed. Thus we can write down a dispersion relation for
T(s, t, u) in s for a fixed value of t: equally well we could write down a single
variable dispersion relation in ¢ or u keeping in each case the other indepen-
dent variable fixed. The next step is to examine the analytic properties of the
amplitude as a function of its two independent variables simultaneously.
When we have determined these analytic properties in terms of two variables
we will be able to construct a representation for the amplitude in the form of
a double variable dispersion relation. This representation, originally formu-
lated by MANDELSTAM [1958], provides a concise and complete statement of
the postulated analyticity properties of the elastic scattering amplitude.

The structure in s of the amplitude T'(s, ¢) is given by the single variable
dispersion relation

11° ImT(sit
G- & i +_J Im T(s', )
s—M s—4dm“+M°+t =

- ds’ +
am: 5§ g

+

-t 2 A\
lj I B0, Gy (6.15)

n)-w  s'—5

which refers to some real fixed value of the variable ¢. Recall that for simpli-
city we are considering the elastic scattering of spin zero particles of equal
mass m. Further we shall assume that unsubtracted dispersion relations are
meaningful. To display the symmetry between the s- and u-channels we
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To attempt to make an analytic continuation of D(s, t) in ¢, from its
known values in the s-channel physical region, we fall back on the s-channel
unitarity relation. This may be regarded as the defining relation for D,(s, )
and it will form the basis for the continuation procedure. Before writing
down the unitarity relation we recall that for the s-channel we use the
familiar variables

s =4m?*+q*) = W?
t = —29*(1—cos 6)

where q and 6 are the c.m. 3-momentum and scattering angle respectively
and g = |q]. Remember that s lies in the physical range, it is real and greater
than 4m?. Initially we may suppose that the value of # corresponds to a point
in the s-channel region, eq. (6.66): this permits us to write down the s-channel
unitarity relation for D.(s, t), but we will then allow ¢ to assume arbitrary
values and define D,(s, t) by the analytically continued unitarity relation.
For values of s below the inelastic threshold the s-channel unitarity relation
is (cf. egs. (6.6) and (4.35))
2W . s .

Dy(s, t) = -q—JdQ (00 |Tp|0°¢") <0'¢"| T5| 00> (6.69)
where the initial and final states are specified by polar angles (0, 0) and (0, ¢)
respectively. The angular integration d2’ =d (cos 6’) d¢’ is over all possible
configurations of the two-particle intermediate state. We choose the axes so
that ¢ =0, that is the zx-plane is the plane of scattering. Now since the
T-matrix is invariant under rotations we can write

(B0|TS16'¢"y = <00|T]6"0) (6.70)

where 6” is the angle between the directions specified by the two sets of polar
angles (6, 0) and (€', ¢’), see Fig. 6.3. These angles are related as follows

cos 0" = cos 0 cosf' + cos ¢’ sinf sinf'. (6.71)
Now recall that
' ’ q /
0 |T|00>) = — T(s, ¢t
{0'¢'|T5| 00) W (s, ')
(6.3)
00|T31670y = —L- T*(s, "),
<00{T4|6"0> i (s, t)
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with s+¢' +u’ = 4m?, and a similar relation for T'(s, t”). When these disper-
sion relations are substituted into eq. (6.73) it becomes

2 2 a0
Ds(s,t)=-£—deQ’[ 2 . +—1-J 20

M2—¢ M*—u' wlam t—t

1 [o0] D B 2 2
4 __j u(ss ul) dul] % g &0 g

nJam u;—u'

@ (* o0 %
1 1J Dien) g L0 DG ud) duz:l (6.75)

nJam t, —t" nJam u,—u"

t—channel

|

Fig. 6.4. Some low order unitarity diagrams.
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immediately deduce that each of these diagrams will only contribute a
singularity to the discontinuity in some quite restricted region of the s, ¢,
u plane. Thus the box diagram of Fig. 6.4b describes two physical inter-
mediate particles in both the s and the t-channels which means that it can
only contribute to D,(s, t) in the region

s=4dmf,  t=4M° (6.79)
Similarly the diagram of Fig. 6.4c can only contribute a singularity in the
region

s—4dm’, t=16m . (6.80)

It is clear from this discussion that the simplest unitarity diagrams with
small numbers of internal lines can contribute singularities to the discontin-
uities for small values of s, tand u (~ 4m?) and in regions of the s, ¢, u-plane
which approach quite close to the physical regions. The diagrams contain-
ing larger numbers of internal lines only contribute for correspondingly lar-
ger values of s, ¢ or u and in general only in regions further removed from the
physical region. Because of this the diagrams with a small number of internal
lines, which we shall refer to as the lowest unitarity diagrams, are expected to
be particularly important. These diagrams will determine the singularities
of the scattering amplitude lying closest to the low energy physical region.

An interesting and physically important situation arises when there is a
selection rule which prohibits a three-particle vertex. We saw, for example, in
Chapter 5 that a three-pion vertex is prohibited by parity conservation. This
means that there is no box diagram (with internal pion lines) for nn scattering.
The lowest unitarity diagrams for this process are of the type shown in
Figs. 6.4c and 6.4d. We shall see that this means that there are no ‘singulari-
ties’ of the scattering amplitude in the region

4m?* < s < 16m?, 4m? <t < 16m>.

A similar situation occurs for TN scattering, again because the three-pion
vertex is forbidden.

We study the analytic continuation of D,(s,t) of eq. (6.75) for nn
scattering. In this case there are no bound state pole terms and therefore,
as we have just remarked, no box diagram. For the moment let us ignore the
u-channel discontinuity D,. Then eq. (6.75) becomes, after interchanging
the integrations

Ds(sa t) = d zj . dtlf dtz Dt(s’ tl) D:‘(S, t2)fdg’( .

t,—1) (t,—t")
(6.81)

SWn 4m 4m?2
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and that #; increases as either ¢, or ¢, increases. Therefore the minimum
value of 1, say t;, = b(s), is obtained by taking the lowest values of ¢, and ¢,
occurring in the integration of eq. (6.81), that is ¢, = t, = 4m?. Now

2

4
K(s, t; 4m?, 4m?) = t(t——16m2 — 1om )
q

and so, taking the larger root, we have

4
(tmis = b(s) = 16m? + 1621 : (6.86)
q

The boundary curve of the double spectral function py, (s, t) is therefore given
by t = b(s). Note that this curve, which is shown in Fig. 6.5, is asymptotic to
the lines s = 4m? and ¢t = 16m>. From eqs. (6.81), (6.82) and (6.84) we find
for 1 > b(s) that

K(s,t;t1,82) = 0

Dy(s, t,) Dy’ (s, t3)

1
Pi(s, 1) = —— dt dt (6.87)
; AWglam: Jam ° [K(s, t; 15, t,)]F
&
q‘; = \{/0 ;@
6‘3@ (o] <
.22 channel © %
\ Physical regjon_
U= b(S) t=b(s) //
% ?su¢ ......... Per # 0

e e wdee e
G il i

Fig. 6.5. The Mandelstam diagram for wrm scattering, showing the elastic s-channel
double spectral functions.
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amplitude may be written as

T(s,t)=—1—j ds’f dr LalS: 1)
ﬂz 4 m?2 b(s") (S"'—S)(t’—t)

j dsIJ~ dul psu(s 4 u )
4 m2 b(s’) (S’ = S) (u' — ﬁ)

o

dul dt' ,ptu(t s U )
Jam  Jowy (W —u)({@'—1)

+

?-iN,,_.

1 (* 00 (* o

. du' ds' pSll(s ] u )
n°Jam2  Jowy (u'—u)(s'—5)

where

i =4m?—s—t, §=4m*—t—u'.

Combining the second and fourth terms, this expression simplifies to

T(S, t) = ._IEJ\ dsf‘[ dtr pst(s,t)
n°Jam? by  (s'=s)(t'—1)

e Jam? b(s") (s"—s)(u'—u)

+-1;'f dt’j du? Ll ) (6.89)

n°Jam b(t") (t'—1t) (u' —u) :

This representation has been obtained by simply using elastic unitarity, and
all the Cutkosky diagrams considered have been elastic in at least one
channel. Clearly above the inelastic thresholds we will have additional
contributions to the double spectral functions. However since the contri-
butions corresponding to higher unitarity diagrams have boundaries which
lie inside those arising from the lowest diagrams the form of the representa-
tion for 7T'(s, t) will be unchanged. Notice that eq. (6.89) involves the assump-
tion that the amplitude has only those singularities that are required by
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Substituting (I1.38) in

0 = [f(s) = f(&1)] + [f(s1) — F()] + [F () — f ()]
we get the following relation between physical absorptive parts (R6)

0 = [Ra(s1,5) — Ra(s,51)] + [Ra(t, 81) — Ra(s1,t)] + [Ra(s,t) — Ra(t, 8)], for |s|,|sl,|t] < 4.

(11.41)
Similar relations have also been derived by Wanders (W3), Roskies (R3), and Auberson
and Khuri (A6). Grassberger (G1) has shown, for example in deriving (II.28), that results
following from positivity of the absorptive part can be improved by a judicious use of
(I1.41). Common and Pidcok (C3) have derived very useful inequalities on the D-wave
below threshold using (I1.41). The relation (11.41) can be regarded as a crossing relation

between physical absorptive parts. Such relations would be discussed further in Sec. IIL

(b) Constraints involving a few low partial waves. We quote for illustration a few

results for 7°x° scattering (M8), and a few for other iso-spin combinations (A4). For n%x°

scattering,
4.067,(0.0341) < fo(3.839) — fo(0.0341) (I1.42)
3.061£,(0.0730) > fo(3.654) — fo(0.0730) (I1.43)
1.494f,(0.537) — 1.623 f2(2.363
: e (I1.44)
< f0(0.537) — fo(2.363) < 1.510£,(0.537) — 1.622 f5(2.363)
and for other iso-spin combinations
1.844£1(0.2937) + 3.765f.(2.4226
fi( ) hi( ) (11.45)
< £2(0.2937) — f2(2.4226) — f4(0.2937) + fo(2.4226).
0.6146 £1(0.2937) + 2.510;(2.4226)
(I1.46)

> fo(2.4226) — f2(0.2937) + g-fo(o.2937).

I1.3 Constraints on integrals of partial wave amplitudes

Balachandran and Nuyts (B2) obtained necessary and sufficient conditions for

crossing symmetry in the form a denumerable set of equality constraints involving integrals
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We proceed to prove (I1.24) and (I1.25). Due to Bose-symmetry,

(4-2)/2
2
Fo(s) = 1 / dt F(s,t,4—s— t). (11.31)
0

Interchanging s and t in (IL22) we deduce

4—3

F(s,t) < F(s,0), 0<s<4, 0<t< 7 (11.32)
Hence,
fo(s) < F(5,0), 0<s<4 (11.33)
Combining this with (I1.23) we have (IL.24). Starting from
1/2
fo(s)=2 /dx F(s,z(4 — 3)), (11.34)
0
we have,
Gy [ (4=5)\ __ (OF(s,2(4-3))
o(s OF(s,z(4— s s, z(4—3
= = I1.35
el S e
0
Further,
t
QF— >0for0<t<4and4>s8>2>2--,
Os /, 2
(éli) <0for0<3<4a.nd0<t<1:—i.
at /, 2

Hence (I1.25) follows. For the remaining results we start from the fixed-¢ dispersion relation

(1L.4) and project out the S-wave,

wd ' ” ' o :
folt) = c(t)+;1r- / - {(t— 4—2¢) + (tzi 5t ("’ +:, 4) } A(s,), |t} < 4. (I1.36)
4

Thus the subtraction constant c(t) in the fixed-t relation can be eliminated in favour of
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shape of the S-wave below threshold, and then indicate the methods of proof, the details
of which are to be found in the original papers (M8, A3, A4, B12, C1, C3, G1, G2, J1,
P1).

Jin and Martin (J1) obtained the results

fo(s) < fo(4), 0<s<4 (I1.24)
and
df;is) >0, 2<s<4 (11.25)
Martin (M8) improved (I11.25) to obtain,
gﬁ-(;‘ﬂ >0, 1.7<s<4 (11.26)
Auberson (A3) obtained
éf;—(:—) <0, 0<s<1127 (I1.27)

Grassberger (G1) improved this result to obtain,

= , 0<s<1217 (11.28)

Common (C1) has derived the important result

& fo(s)

>0 0<a<1T (11.29)

From (I1.24) to (I1.29) it follows that fo(s) has a unique minimum in the range 0 < s < 4,
located somewhere between s = 1.217 and s = 1.7. The shape of the 5-wave thus suggested
is pictured in Fig. 1.

Martin (M8) has derived a class of inequalities of the form fo(s1) < fo(s2) where

0 < 3,3 < 4. For example, we quote,

Fo(0) > fo(3.189),  fo(3.205) > fo(0.2134) > fo(2.9863). (11.30)

These inequalities have been improved by Brander (B12) and by Grassberger (G1), and

generalized to iso-spin combinations other than the x°x° — x%x° by Auberson et al (A4).
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cated. In that chapter we saw how to determine these kinematic singular-
ities and how to take account of them by defining amplitudes which are free
of kinematic singularities. Our concern here is not with these kinematically
based effects but with the ‘dynamical’ singularities which appear in f3. ,,(s)
as a result of the Mandelstam singularities in 7,4, ,,(s, ¢’, #’) arising directly
from the s-, - and u-channel processes. The singularities in the partial wave
helicity amplitudes arising from these are determined in precisely the same
way as for the spin zero case and in fact the calculation is easily seen to
lead to the same results for the location of the ‘dynamical’ singularities in
:ap(8). This is clear for the effect of the s-channel singularities, which come
directly from T,.,,(s, t’, u’) in eq. (8.34). For the ¢'- and u ‘-channel singulari-
ties one can either write down a representation for £, ,,(s) analogous to
eq. (8.9) using a generalized version of Neumann’s formula (eq. (9.48)) or
alternatively one can use the argument that singularities occur whenever the
end-points of the path of integration, x’ = + 1, in eq. (8.34) correspond to
values of ¢’ or u’ for which T, (s, t’, u’) has a ‘dynamical’ singularity.
This leads immediately to equation (8.10) or (8.22)

The threshold behaviour of the amplitudes f2. ,,(s) is somewhat more
complicated for particles with spin than in the spin zero case. In general the
helicity amplitudes f3.,,(s), of definite J, correspond to several different
values of orbital angular momentum /. However the basic formula is still
essentially eq. (8.18") ;

f;:j; ab ™ (pq)lmlu

where, when due account has been taken of parity, /_;, is the lowest allowed
value of / (see JACKSON and HiTe [1968]).

§ 2. Asymptotic Bounds on Scattering Amplitudes

Using unitarity together with analyticity properties of the scattering
amplitude it has been found possible to obtain asymptotic bounds on
scattering amplitudes and cross-sections. The first such bound was obtained by
FROISSART [1961] who deduced, using the Mandelstam representation, that

0u(s) < c(log s)* as s—oo. (8.35)

This result is generally known as the Froissart bound. Since Froissart’s
first derivation of this result a great deal of further work has been put into
this problem, notably by Martin. (See, for example, MARTIN [1963, 19651,
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with +1 as foci such that it does not enclose any singular points of the
amplitude. This is a well known result in complex variable theory (see,
for example, TiTcHMARSH [1939]). The ellipse in the x-plane is often
referred to as the Lehmann ellipse. For real values of s the singularities
of T(s, t,u) lie on the real x-axis and the nearest singularity (which will
come from either the z-channel or the u-channel so to be specific let us say )
will correspond to a fixed value t, of t coming from the lowest 7-channel
threshold. This gives as the nearest singularity in the x-plane

v pel0 (8.38)

x, will then be the semi-major axis of the largest ellipse with +1 as foci for
which the expansion (8.1) is validt.

We now make the assumption that for ¢ < ¢, the amplitude T'(s, t) is
bounded, for large s, by a polynomial in s

Tz t) < s°, (8.39)

for s greater than some s, and where N is independent of s. In deriving the
Froissart bound we only need consider the imaginary part of the elastic
scattering amplitude as we shall use the optical theorem to obtain the total
cross-section. Taking a point ¢, such that 0<¢, <t, we can replace T(s, t,)
in (8.39) by its partial wave expansion and obtain the result

Y. 21+1) Im fi(s) P, (1 + ;—3—) =5 fors > s, (8.40)
1=0 q

Since each term in this series is positive (eq. (8.37)) we can deduce that for
5> So,

Q21+1) Im f;(s) P, (1 ¢ 551-5) _ (8.41)
q

Now for large / and for x >1, the Legendre polynomials satisfy the
inequality

Py(x) {1+@2x-2)*} (8.42)

> —
QI+1)*

t Although in the above discussion we introduced the singularities in the x-plane as
consequences of the Mandelstam singularities in 7'(s, ¢, #) the assumption that T'(s, ¢, u)
should be analytic in the ellipse described above is a distinctly weaker analyticity assump-
tion than the Mandelstam representation, see for example MARTIN [1966].
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Froissart’s bound now follows directly from the Optical Theorem, eq. (6.49),

0o(5) < c(log 5)2. (8.35)

Notice that the inequality (8.51) holds also for |T(s, z=0)|. This
follows since, from (8.37), | f,(s)] < p~1, so that (8.50) holds with |T(s, ¢ = 0)|
replacing Im T'(s, ¢t = 0). Hence

|T(s, t =0)| < ys(log s)*. (8.52)

Since [P,(x)] <1 for —1 < x <1 we can see from (8.49) and (8.37) that

Im T'(s, t)| < |Im T(s, 0)] (8.53)
for values of ¢ in the range

4m?—s5s < t <.0. (8.54)

This range is the s-channel physical region. It follows from (8.53) and (8.51)
that for values of ¢ lying in the above range not more than two subtractions
are needed in the fixed ¢ dispersion relation for T'(s, ¢). Thus

ds’ +

2 oo ’
T(s, 1) = a(t)+b()s + S_J Im 7(s',
m Jam s'(s'—s)
(8.55)
2 —t .
+ i" j' w dS’

T J-o $2(s'—5)

is a valid dispersion relation provided that ¢ lies in the range defined by (8.54).
To show that the integral over the left-hand cut converges one needs to use
crossing. This shows that Im T'(s, ¢) has the same asymptotic behaviour for
s— — o0 as for s —» + 00. This result has been extended by Jin et al. [1964] who
have shown that the twice subtracted dispersion relation is valid for positive
values of ¢ less than 4m?. Thus

TG0 =5 for t < 4m? (8.56)

where & > 0.
For ¢ lying in the range 4 m?>—s <t <0, that is for 0 < 6 <=, one can
obtain a stronger inequality than (8.52). This comes from the property of

P,(x) (see, for example, MAGNUS and OBERHETTINGER [1954], p. 71) that for
x| <1,

|P(x)| < (—————2'—)1} : (8.57)
nl/(1 —x%)
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