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Chiral extrapolation of hadronic vacuum polarization

Gilberto Colangelo?®, Martin Hoferichter?, Bastian Kubis®, Malwin Niehus?, Jacobo Ruiz de Elvira®

aAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
bHelmholtz-Institut fiir Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitdt Bonn, 53115 Bonn, Germany

Abstract

We study the pion-mass dependence of the two-pion channel in the hadronic-vacuum-polarization (HVP) contribution to the anoma-

HVP

lous magnetic moment of the muon a,,

, by using an Omnes representation for the pion vector form factor with the phase shift

derived from the inverse-amplitude method (IAM). Our results constrain the dominant isospin-1 part of the isospin-symmetric
., light-quark contribution, and should thus allow one to better control the chiral extrapolation of affvp, required for lattice-QCD
-y calculations performed at larger-than-physical pion masses. In particular, the comparison of the one- and two-loop IAM allows us

to estimate the associated systematic uncertainties and show that these are under good control.

< 1. Introduction

i~  Currently the biggest uncertainty in the Standard-Model pre-
* diction for the anomalous magnetic moment of the muon [1-28]

aM = 116591810(43) x 107" ¢5)

resides in the HVP contribution, which, when derived from
ete” — hadrons cross-section data [1, 6-12]

git]. =630 x 107, )

H (i

leads to a 4.2¢ difference to experiment [29-33]
g = 116592061(41) x 10", 3)

3 Improving the (time-like) data-driven evaluation of HVP (2)
‘- relies on new data, most crucially for the e*e~ — 2r chan-
<™ nel [34, 35], while a space-like measurement would be possible
at the MUonE experiment [36, 37].

Alternatively, the precision of the HVP contribution evalu-
ated in lattice QCD is getting closer to the data-driven determi-
nation, with an average [1] (based on Refs. [38-46])
= 7116(180) < 101, @)

HVP l
a :
H lattice average

and a subsequent first sub-percent result [47]
a =06 16 (5)

In this Letter, we do not address the 2.1¢ tension with the data-
driven approach,’ see Refs. [56-60], but instead focus on the
potential source of systematic uncertainty in lattice calculations
that may arise if the simulation is performed at unphysical val-
ues of the quark masses.

'In contrast, there is good agreement between data-driven and lattice-QCD
evaluations for hadronic light-by-light scattering, as further corroborated by
recent work [48-55].

This effect is most relevant for the isospin-symmetric ud cor-
relator, both because its contribution is by far the largest, and
because it is the lightest quarks that make simulations at the
physical point expensive. Often, the required quark-mass ex-
trapolation can be controlled using chiral perturbation theory
(ChPT), at least for sufficiently small masses, but the analysis
of Ref. [61] showed that for the HVP contribution this does
not seem to be the case. On the one hand, the presence of a
mass scale lighter than M,, namely the muon mass, makes the
pure chiral expansion of practical use only for M, < m, [61].
Physically, it is well known that the 27 contribution to HVP is
dominated by the p(770) meson, see, e.g., Ref. [62] for the im-
plication for lattice calculations, and that controlling the quark-
mass dependence of its parameters requires information beyond
ChPT. On the other hand, one would not expect the quark-mass
dependence of the p(770) mass, for example, to be so compli-
cated that it could not be described by a simple parameteriza-
tion. If this is the case, it is not clear why a simple parameter-
ization of the quark-mass dependence of the 27 contribution to
HVP should not be possible, and even allow for a controlled
chiral extrapolation of good precision (in fact, finite-volume
corrections have been addressed using ChPT methods [63]).
Given the high computational cost of simulations at the physical
quark masses this is a question of current high interest, which
can be addressed from a ChPT/phenomenological point of view
and deserves the detailed investigation we aim to provide in this
Letter.

Our approach here is to follow Ref. [64] and combine an
Omnes description [65] of the pion vector form factor (VFF)
with the inverse-amplitude method (IAM) [66-73], to capture
the quark-mass dependence of the dominant two-pion interme-
diate states. To this end, we employ the one- and two-loop IAM
to describe the pion-mass dependence of the 7 P-wave phase
shift [74], leading to a representation that guides the chiral ex-
trapolation of the / = 1 component of the isospin-symmetric
ud contribution to ", We stress that our goal is not to show
that the IAM is able to predict to high precision the quark-mass




T Ax7
NULY 2

™~
Q
P20 ]

Pion Form Factor Phase, 77 Elasticity and
New ete” Data

S. Eidelman ® and L. Lukaszuk?

& Budker Institute of Nuclear Physics, Acad. Lavrentyev 11, Novosibirsk, 630090,
Russia
b Andrzej Soktan Institute for Nuclear Studies, Hoza 69, PL-00-681, Warsaw,
Poland

Abstract

New precise data on the low energy ete™ annihilation into hadrons from Novosibirsk
are used to obtain bounds on the elasticity parameter and the difference between
the phase of the pion form factor and that of the 77 scattering.

Pion form factor and its relation to 7w scattering have been extensively studied
for many years (see [ 1] and references therein). Although the form factor phase
naturally appears in any model of the pion form factor [ 2, 3, 4, 5, 6], it is well
known that only the absolute value of the form factor can be usually measured
while information on the phase can be gained from sophisticated interference
experiments. However, as shown long ago, there is an interesting possibility
to obtain bounds on the elasticity parameter of the P-wave 7 scattering, 7,
and the difference between the phase of the pion form factor ¢ and that of the
77 scattering 0; in a model-independent way under very general assumptions |
7]. Namely, the following inequality has been obtained there! :

1. o 1—n?
(Tm)z +msin® ( — 1) € — Lor, 0gmsl (1)
or, equivalently,
- 1—n?
la(m, ¥ — 61)]* < - (2)

4

' A factor |F|? was unfortunately omitted on Lh.s. of formula (5a) in Ref. [ 7]. All

other relations in Ref. [ 7] are correct.

Preprint submitted to Elsevier Science
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Two-Loop Analysis of the Pion Mass Dependence of the p Meson
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Analyzing the pion mass dependence of zz scattering phase shifts beyond the low-energy region
requires the unitarization of the amplitudes from chiral perturbation theory. In the two-flavor theory,
unitarization via the inverse-amplitude method (IAM) can be justified from dispersion relations, which is
therefore expected to provide reliable predictions for the pion mass dependence of results from lattice QCD
calculations. In this work, we provide compact analytic expression for the two-loop partial-wave
amplitudes for J = 0, 1, 2 required for the IAM at subleading order. To analyze the pion mass dependence
of recent lattice QCD results for the P wave, we develop a fit strategy that for the first time allows us to
perform stable two-loop 1AM fits and assess the chiral convergence of the IAM approach. While the
comparison of subsequent orders suggests a breakdown scale not much below the p mass, a detailed
understanding of the systematic uncertainties of lattice QCD data is critical to obtain acceptable fits,

especially at larger pion masses.

DOI: 10.1103/PhysRevLett.126.102002

Introduction.—While recent years have shown signifi-
cant progress in understanding the QCD resonance spec-
trum from first principles in lattice QCD [1], most
calculations are still performed at unphysically large pion
masses, requiring an extrapolation to the physical point to
make connection with experiment. Such extrapolations can
be controlled using effective field theories, i.e., chiral
perturbation theory (ChPT) [2-4] for observables that
allow for a perturbative expansion. By definition, this
precludes a direct application to resonances such as the
p meson in the P wave of zz scattering. In fact, spectro-
scopy results from lattice QCD are arguably most advanced
for the p meson [5-20], with even calculations at the
physical point now available [20], which makes this
channel the ideal example to study the details of the pion
mass dependence. In addition, the nz P wave features
prominently in a host of phenomenological applications,
among them hadronic vacuum polarization [21-26],
nucleon form factors [27-30], and the radiative process
ym — nxm [31,32]. For the latter, a thorough understanding
of the nz P wave is prerequisite for an analysis of the
pion mass dependence of recent lattice results [33-35],

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL. Funded by SCOAP".

0031-9007/21/126(10)/102002(7)

102002-1

see Ref. [36], and similarly for decays into three-pion final
states [37].

On the technical level, the failure to produce resonant
states is related to the fact that unitarity is only restored
perturbatively in ChPT, so that any description of reso-
nances requires a unitarization procedure. A widely used
approach known as the inverse-amplitude method (IAM)
achieves this unitarization by studying the unitarity relation
for the inverse amplitude [38-46]. In particular, in the case
of SU(2) ChPT the IAM procedure can be derived starting
from a dispersion relation in which the discontinuity of the
left-hand cut is approximated by its chiral expansion
[41,42]. While Adler zeros induce a modification for the
S waves [47], the naive derivation of the IAM survives for
the P-wave amplitude: writing the partial wave for 7z
scattering #(s) as

1(s) = tp(s) + t4(s) + 26(s), (1)

with the subscripts indicating the chiral order, the unita-
rized amplitude at next-to-leading order (NLO) becomes
[39-41]

Ol
hiols) = 75 0y 2)

while at next-to-next-to-leading order (NNLO) (42,45]

Published by the American Physical Society
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190 S-MATRIX AND THE KINEMATICS OF SCATTERING 4, §5.2

If we write 7, as an exponential, and for convenience put
n, = e 2#7 (4.162)

where p; is real and positive, then

e2iGs+ipn)_q

= : 4.163
Vi 2id (4.163)

The effect of the inelastic channels has been to give the phase-shift a positive
imaginary part.

The Argand diagram provides an elegant way of describing the energy
dependence of a partial wave amplitude f;. Eq. (4.161) may be written in the
form

2q9f; = i(1—n, e¥'%)

where J; and #, are functions of the energy or of the momentum g. As the
energy varies the locus of 2gf; on the Argand diagram cannot move outside
the circle of unit radius with point (0,1) as centre. For ns=1, 2qf; lies on the
circle, this corresponds to a fully elastic process; as we pass the threshold
for inelastic processes, %, becomes less than one and the locus moves in from
the circle. A typical plot is shown in Fig. 4.7. The locus starts at the point O

2q Im £
4
1y
5 25,
2q1,
A
) 2q Re f,

Fig. 4.7. Argand diagram of 2¢ f;.
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124 G. WANDERS

the symmelry of an amplitude does not require specific assumptions on its
asymptotic behaviour in the complex plane.

Suppose that 7(s) is symmetric (1'(—s)=T(s)) and satisfies twice-sub-
practed digpersion relations. We perform the subtractions at ¢=0:

(A1) T(s) = T(0) + = / a2 [—,5—--~ +ML] .

Rowriting (A.1) for s=gs,, we see after elementary transformations that
the difference T'(s)— T(s,) i8 given by

; . i | 1 :
a2 m—re)="2" [ara |y =g as 5

This is a once-subtracted dispersion relation with arbitrary subtraction
point §,.

Similarly, suppose that T'(s)is antisymmetric (T(—8)=— T(s)) and satisfies
once-subtracted dispersion relations. Subtracting at s=0, we have

(4.3) T(s) =2 f(-l,ﬁ.fA_(;;I) { o ]

It is immediately seen that this relation may be transformed into the
unsubtracted dispersion relation

o

(AL4) T(s) __fd.g'A(s')[.,. }:_ . ] ;

$'—s 8’ +s

ArrENDIX B

Interchange of differentiation with respect to ¢ and integration over s.

Tor definiteness we consider the integral

(B.1) J(t) = f ds:gl—z AW(s, 1)
4
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3.3 Kinematics and isospin structure of the amplitude
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and that #, increases as either ¢; or #, increases. Therefore the minimum
value of 7, say t, = b(s), is obtained by taking the lowest values of ¢, and ¢,
occurring in the integration of eq. (6.81), thatis t; =1, = 4m?. Now

2

4
K(s, t; 4m*, 4m?) = t(t—-16m2 o )
q

and so, taking the larger root, we have
16m*

2 .

q

(t)mia = b(s) = 16m* + (6.86)

The boundary curve of the double spectral function py (s, t) is therefore given
by ¢ = b(s). Note that this curve, which is shown in Fig. 6.5, is asymptotic to
the lines s = 4m? and ¢ = 16m?. From eqs. (6.81), (6.82) and (6.84) we find
for 1 > b(s) that

K(s»f;fl,fz) =0

D.(s.t,) D}
ps‘(s, t) e th‘ d . t(s, 1) t (S, t2) (6.87)
4WqJam: Jam [KG 6. D1
§
c‘) ¢\\ .,j/o Y
3. o ¢
\: 25 62 channel © 57
\. physical region_
u=b(s) \ t=b(s) L
’z ?su* o .':.' '.' : 95! 79
= i

N 7N i g i
s

Fig. 6.5. The Mandelstam diagram for = scattering, showing the elastic s-channel
double spectral functions.
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Physical regions

Fig. 6.6. The double spectral functions (shaded) for wr scattering.

unitarity in each of the three channels, and consequently we speak of maxi-
mum analyticity of the amplitude. This double spectral representation was
originally postulated by MANDELSTAM [1958] and is known as the Mandel-
stam representation. .

No general ‘proof’ of the Mandelstam representation is known. An
approach, which has been partially successful, is to study the singularity
structure of Feynman diagrams. LANDAU [1959] has shown that for an
arbitrary diagram these singularities occur for values of the external variables
(such as s, t) that allow the internal particle momenta to be on their mass
shells. Many low order diagrams have been studied in this way and are
found to satisfy the Mandelstam representation. However the general




