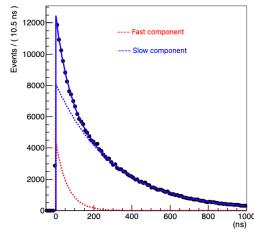

Considering more complicated cases

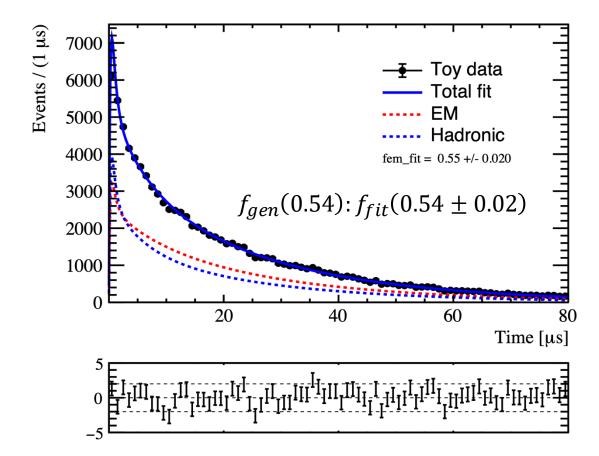
- Previous toy:
 - Only 2 two components, the fit to time and fast fraction can reach to a good precision.
 - What about more complicated case?
 - ZnWO4: 3 components for EM and hadron/ion
 - Pion: ~54% EM + ~46% Hadronic



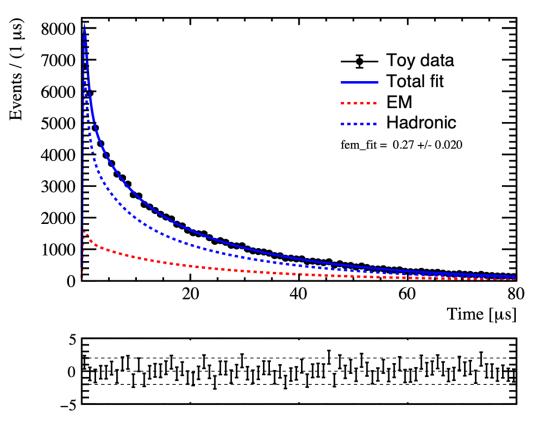
Type of irradiation	Decay constants, μs			
	τ_1 (A ₁)	$\tau_2 (A_2)$	τ_3 (A ₃)	
γ ray	0.7 (2%)	7.5 (9%)	25.9 (89%)	
α particles	0.7 (4%)	5.6 (16%)	24.8 (80%)	

cascade initial information							
	Particle	e^-	e+	ſ	(π^{-})	π^+	р
	Mean, %	38.7	13.0) 2.	0 4.9	9 11.2	22.9
	Mean, % RMS, %	8.1	5.5	0.	5 3.	7 11.6	10.3
	Particle	n	D	Т	lpha	nuclei	Total
	Mean, %	0.8	1.8	0.3	0.8	2.5	08.0
	Mean, % RMS, %	0.4	1.7	0.5	0.5	1.4	98.9

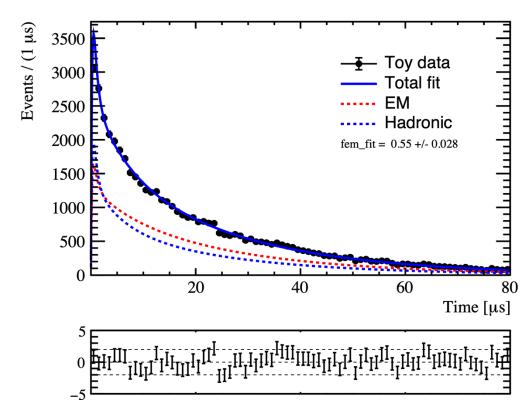
Average energy deposit contribution fraction per particle


- Only particles experienced more than 500 steps are considered;
- The deposits can further be split into the 2 components:
 - Electromagnetic $[e^-, e^+, \gamma]$ on average 53.7% of the total energy;
 - Hadronic [all the rest] on average 46.2% of the total energy;

Generate new toys based on the pion+


- Toy settings:
 - 10000 PE/GeV, 10 GeV pion+
 - Time constants and fraction:
 - 54% with parameters from gamma ray
 - 46% with parameters from alpha
 - Fitting:
 - The time shape parameters are fixed.
 - The fraction of EM part (54% in truth) is float

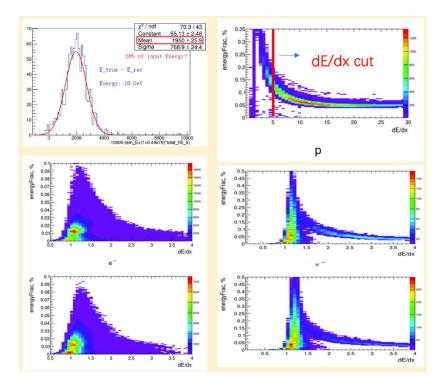
Type of irradiation	Decay constants, μs			
	τ_1 (A ₁)	$\tau_2 (A_2)$	$ au_3$ (A ₃)	
γ ray	0.7(2%)	7.5 (9%)	25.9(89%)	
α particles	0.7~(4%)	5.6(16%)	24.8 (80%)	



Other cases

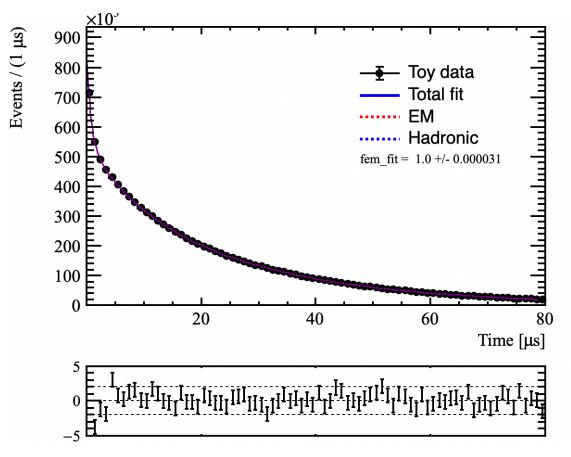
- With lower EM fraction:
 - 25%, 10 GeV
 - f_EM from fit: 0.25 +/- 0.02

- With lower energy :
 - 54%, 5 GeV
 - f_EM from fit: 0.55 +/- 0.03



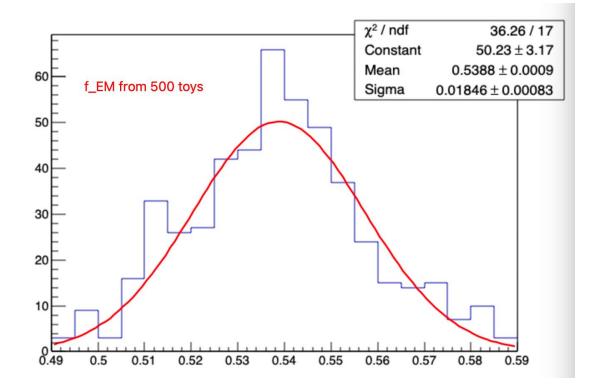
Simulation with Geant4

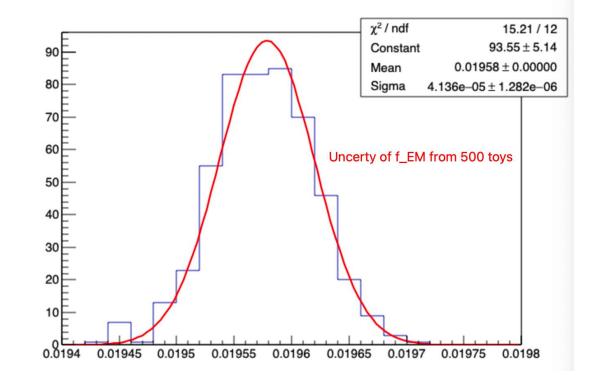
- Basic settings
 - Geometry: 0.04m * 0.04m * 0.08m
 - Material: ZnWO4
 - OpticalProperty: assuming proton and other ions have same parameters as alpha


Type of irradiation	Decay constants, μs			
	τ_1 (A ₁)	$\tau_2 (A_2)$	τ_3 (A ₃)	
γ ray	0.7(2%)	7.5 (9%)	25.9(89%)	
α particles	0.7~(4%)	5.6(16%)	24.8 (80%)	

- When de/dx < 5 (EM)
 - All particles follows the same parameters as photon

The decay time


• The geometry might be too small for the 10 GeV pi+



Missing physics processes.. ⊗

Updating...

f_EM and its uncertainty from 500 toy

