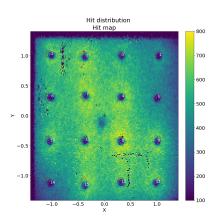

Cofee break

27/09/24

Reminder: Conventions

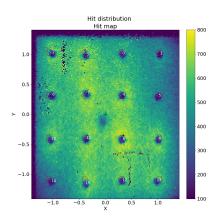


- X-Y convention derived from the drift chambers
- Propagated to the Xm-Ym variables
- Blue square is the drift chamber blind zone

Fibre position

Determining the actual fibre position

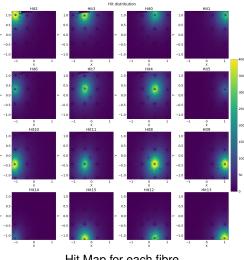
- Use the V2 processing (use 2 drift chamber/3)
- ► Finding the minimum of the mean hit value (blue circle) with an iterative procedure starting with an approximate position (red)


Results (cm):

	(., .						
Fiber	0	1	2	3	4	5	6	7
Х	0.33	1.05	-1.01	-0.36	0.33	1.01	-1.01	-0.34
Y	1.0	1.0	1.01	0.98	0.31	0.29	0.31	0.34
Fiber	8	9	10	11	12	13	14	15
Х	0.33	1.01	-1.03	-0.36	0.33	0.98	-1.03	-0.38
Y	-0.43	-0.43	-0.43	-0.41	-1.11	-1.11	-1.13	-1.17

Fibre position

Determining the actual fibre position


- The position method resolution is 160 μ m
- Difference in x of the fibre position are consistent (less < 200μm) within resolution
- Differences in y are larger up to 600 μm
- No clear pattern indicating a misalignment of the GRAiNITA with respect to the beam nor a beam divergence (indeed no systematic effect observed but localized misalignment)
- Can we check the actual position of the fibre on Troll 1?

I. HOMOGENISATION OF THE FIBRES RESPONSES

Introduction

► Use muon data (V3 processing)

Hit Map for each fibre

Cuts

Run 60 (Muons)

Events

Cuts (for fibre i):

eventType 4 (beam event) hitTot = \sum hit[i]Cor < 2000 and > 0

Track

mean distance to track < 250 μ m : diffTrack2 =1 Track has been reconstructed : muonDZ >0

Geometrical

Track in a 1.3x1.3 cm square : xM and yM > -1.3 and < 1.3

Distance definitions

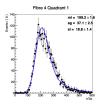
dist2 = $\sqrt{(xM - x[i])^2 + (yM - y[i])^2}$ dx = xM - x[i]

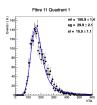
Quarters

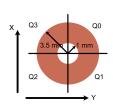
Q3

dy = yM - y[i]

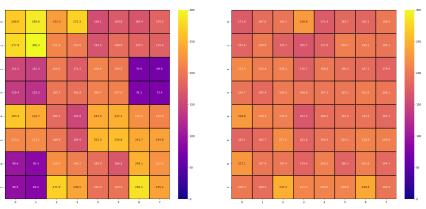
dist2 > 1 mm and <3.5 mm
Q0 dx>0 and dy>0
Q1 dx<0 and dy>0
Q2 dx>0 and dy<0


dx<0 and dy<0


7/29


Quarters definition

- Compute the MPV value of the PE/track around each fibre
- Use quarters in order to avoid potential border effects (1 quarter used in the corner, 2 for side and 4 for center fibres)
- Fit the fibre distribution for a Landau convoluted with a Gaussian
- Equalise the Landau MPVs used as the fibre response estimator
- Build corrective factor from the average value of individual responses



Results

Coefficients:

$$hit[i]_{corrected} = \frac{hit[i]}{coeff[i]}$$

Map of each quadrants (4/fibres) of hit[i]Cor (not htot!):

Before applying the coefficients Can be enabled/disabled in the processing. After applying the coefficients

II. BORDER EFFECTS

Cuts

Run 60 (Muons)

Events

Cuts (for fibre i):

eventType 4 (beam event) hitTot = \sum hit[i]Cor < 2000 and > 0

Track

mean distance to track < 250 μ m : diffTrack2 =1 Track has been reconstructed : muonDZ >0

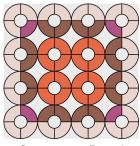
Geometrical

Track in a 1.3x1.3 cm square : xM and yM > -1.3 and < 1.3

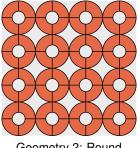
Distance definitions

dist2 = $\sqrt{(xM - x[i])^2 + (yM - y[i])^2}$ dist3a = abs(xM - x[i])dist3b = abs(yM - y[i])

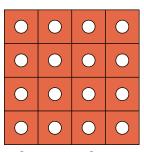
Round quarters


dist2> 1 mm and dist2<3.5 mm

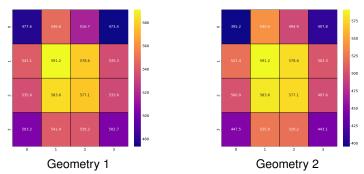
Square quarters


dist2 > 1 mm and dist3a < 3.5 mm and dist3a < 3.5 mm

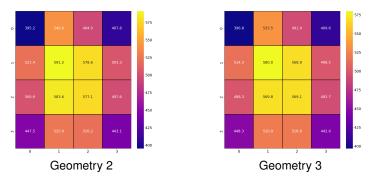
Definition


3 geometries studied:

Geometry 1: Round shapes, without borders



Geometry 2: Round shapes


Geometry 3: Square shapes

Results 1/3

- Geometry 1: The one used in uniformization of fibres, now look at the sum of the fibres.
- We clearly see that the corner and borders regions are less luminous than the central ones, likely border effect
- With geometry 2/3 we can scrutinize the border effect with more granularity
- ▶ When comparing within a region the innermost to the outermost we also see a decrease of the light yield, effect up to 20 %

Results 2/3

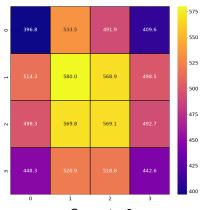
- Geometry 3 : embodies the full volume but the center of the fibre
- Effect is expectedly stronger
- ▶ We build estimators of the border effect amplitude by comparing the corners, central and borders respectively
- Uncertainties are estimated by taking the min to max of the variation for the 4 corners, the 8 borders and 4 central

Results 3/3

Average values:

► Center: Ce = 571.9 ± 5.6 PE

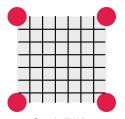
► Corner: $Co = 424.3 \pm 25.7 PE$


▶ Borders: Bo = 508.6 ± 20.8 PE

Some estimators:

$$ightharpoonup rac{Ce-Co}{Co} = 0.347 \pm 0.095$$

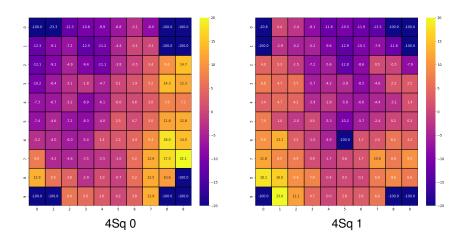
$$ightharpoonup \frac{\text{Ce-Bo}}{\text{Bo}} = 0.124 \pm 0.057$$


$$ightharpoonup$$
 $\frac{\text{Bo-Co}}{\text{Co}} = 0.198 \pm 0.121$

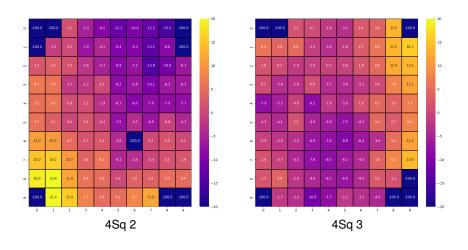
Geometry 3

III. UNIFORMITY MAP

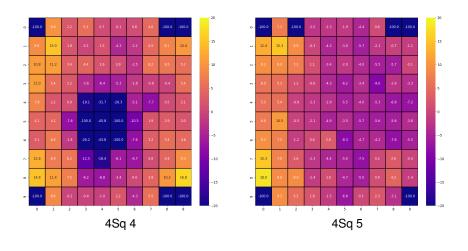
Geometry

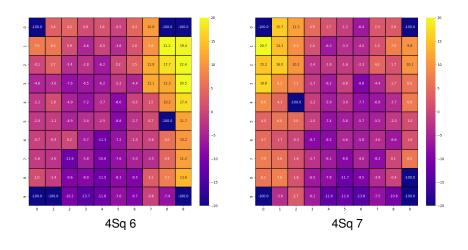

4Sq definition

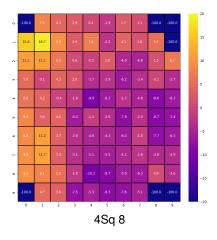
4Sq 0	4Sq 1	4Sq 2
4Sq 3	4Sq 4	4Sq 5
4Sq 6	4Sq 7	4Sq 8


4Sq position

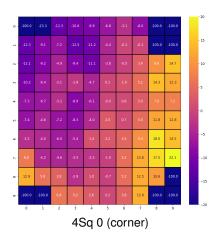
- Space in a 4-fibre square (4Sq) cut in 49x1 mm² squares
- Landau x Gaussian fit in each
- 9 (4Sq) can be built
- ► MPV map can be produced for each
- Fit error in the 1-2% range, can rise to 4% in the corners
- Mean value of each map took as a reference
- Fit with $\chi^2 > 1.1$ are discarded


Uniformity maps 1 out of 5


Uniformity maps 2 out of 5

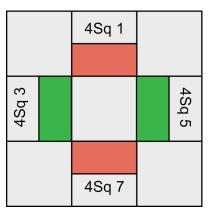

Uniformity maps 3 out of 5

Uniformity maps 4 out of 5

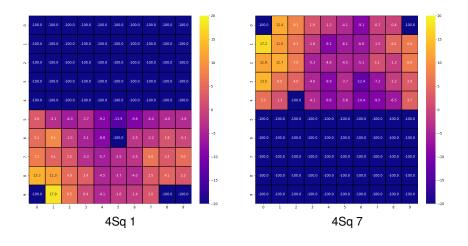


Uniformity maps 5 out of 5

Interpretation


- The 9 maps are showing departure from uniformity consistently
- Border effect that are likely the explanation
- Maximum of the order of 35 % (in the corners)
- Select region which we think are not plagued by border effect

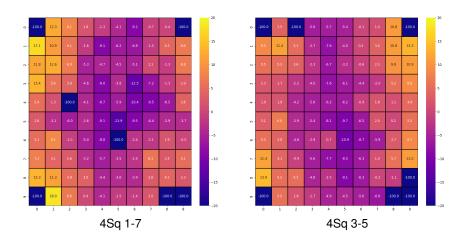
Region location


Selection:

- Avoid the clear fibre and minimize the border effects
- Choice of the half blocs located at the vicinity of the center 4Sq
 4.

Position of the selected blocs

Uniformity maps 1 out of 2


Uniformity maps 2 out of 2

Proposal

- ▶ Is there a way to present this result in a unique way to input into Denys simulation.
- Our proposal : merge the previous plot

Final result

