AuxTel updates

Joseph Chevalier, Sylvie Dagoret-Campagne, Philippe Gris, Marc Moniez, Martin Rodriguez Monroy, Corentin Ravoux, <u>Jérémy Neveu</u>, Nicoleta Pauna

1

Outline

- 1. 2. 3. 4. 5. 6. 7.
 - AuxTel in <180s
 - 2. Fresh news from summit
 - 3. Atmospheric studies
 - 4. Observation strategy with Gaia
 - 5. From AuxTel to LSST photometric corrections
 - 6. CBP news
 - 7. Summary

AuxTel in <180s

Photometric surveys for cosmology

- □ In cosmology: the farther, the redder!
- → colors contain information on cosmological distances.
- Any unwanted colored effect on your measurements distorts bias cosmological distances.
- Colors can be altered by many effects.

Rubin Auxiliary Telescope (AuxTel)

- 10
- □ 1.2m telescope on Rubin site equipped with a spectrograph
- Rubin Auxiliary Telescope mission is to measure on-site atmospheric transmission, parallel to main telescope

Rubin Auxiliary Telescope (AuxTel)

- 11
- □ 1.2m telescope on Rubin site equipped with a spectrograph
- Rubin Auxiliary Telescope mission is to measure atmospheric transmission on-site parallel to main telescope

27/11/2024

Representative AuxTel data in 2024

Hologram data

Quadnotch filter + blazed blue grating

J. Neveu

AuxTel news

- Before ComCam observations: 3 nights every week up to 2am
- Chris Stubbs on sabbatical year in Chile: got 2 full nights from sunset to sunrise with very good weather conditions!
- Stopped during ComCam campaign and maintenance:
 - dome (painting, motor checks) => should improve in-dome turbulence
 - DDS issues to run AuxTel with ComCam
- Restart after December 15th, maybe engineering runs (tests...)
 No planning for joint observations with LSSTCam

Improvement of Spectractor pipeline

- □ Re-study of the diffraction 2nd order contamination
- Re-study of the atmospheric differential refraction
- □ Re-study of the AuxTel throughput by airmass regression
- Re-study of the forward model
- Re-study of the atmospheric model

=> new atmospheric parameters

4 2 0+ 24-01-01 25-02-02 24-12-02 24-03-01 24-09-01 24-05-01 24-07-02 date (since January)

2022

2023

2024

+

First time we get a signal => need to cross-check

Rubin LSST-France - APC

27/11/2024

20

First time we get a signal => need to cross-check => Gaia spectra completely off

But good seasonal correlation with satellite's data (+ offset)

2023/11/27 night 🎬

J. Neveu

Rubin LSST-France - APC

27/11/2024

- Correlations with AuxTel photometry not visible
- Tests of repeatability using pairs of spectra:
 PWV better than 0.3mm
- Needs to assess for some systematics
- Analysis of time correlations and nightly trends

 Go for a paper about Rubin atmosphere from AuxTel first light to ComCam first light (2.5 yr)
 Next pipeline developments for AuxTel campaign after LSST first light

Out-of-atmosphere spectra in the sky

Baseline AuxTel method: measurement of Earth's atmosphere looking at reference stars with known out-of-atmosphere spectra with a spectrograph
 HST catalog (CALSPEC): high resolution spectra but <100 stars available
 Gaia catalog (under study): low resolution but ~1 star/field (if not variable)

Gaia DR3 spectra

AuxTel is high resolution compared with Gaia: atmospheric features well defined on top of smooth Gaia spectra

Gaia DR3 spectra

AuxTel is high resolution compared with Gaia: atmospheric features well defined on top of smooth Gaia spectra

Gaia prospectives

On a few examples, good agreement for PWV measurements but catastrophic for ozone

- Accuracy will be checked on the full AuxTel dataset
- Water is the most important atmospheric parameter for DDF cosmology (SNIa):
 - ongoing forecasts with CALSPEC
 - search for adapted Gaia standards (in the DDF or close)

From AuxTel to

LSST photometric corrections

Come to AuxTel parallel session!

CBP news

CBP = Collimated Beam Projector

Magic tool to measure telescope's transmission with monochromatic light

Rubin CBP

- Repaired at La Serena on October 16th
- □ In dome November 22th
- First photon in ComCam scheduled on December 2nd
- Ready to analyse first data

Travelling CBP

 Goal: measuring AuxTel and ZTF transmission
 All parts have been delivered at LPNHE, assembly by Laurent Le Guillou and Enya Van den Abeele

J. Neveu

□ Calibration is great.

34

Back-up slides

Structure of a slitless spectrum

Observation of a monochromatic (green) star without a disperser:

Observation of a monochromatic (green) star with a disperser:

Observation of a polychromatic star with a disperser and ADR:

From theory to reality

The CCD is a BW sensor:

The background can be structured, with field stars:

CCD effects: saturation, noise...

Spectrum extraction

□ Spectrophotometric extraction by forward modelling [Neveu et al., 2023]

Mathematics of slitless forward modelling

□ Observation of astrophysical source with spatio-spectral flux density $C_p(\vec{r}, \lambda) = [T_{\text{inst}, p}(\lambda) T_{\text{atm}}(\lambda | \theta_a) S_*(\lambda)] \times \delta(\vec{r} - \vec{r}_0)$

with p the diffraction order, θ_a the atmospheric parameters

□ Image is a stack of diffraction orders, which are a stack of monochromatic PSF kernels $\phi_p(\vec{r}|\lambda)$ dispersed by the grating:

$$I(\vec{r}) = \sum_{p} \int d\lambda \iint d^{2}\vec{r}' \ C_{p}(\vec{r}',\lambda) \phi_{p}(\vec{r}-\vec{r}'|\lambda)$$

□ For a point source, the convolution product becomes:

$$I(\vec{r}) = \sum_{p} \int d\lambda \ S_{p}(\lambda) \phi_{p} \left(\vec{r} - \vec{\Delta}_{p}(\lambda) |\lambda\right)$$

Dispersion relation

Spectrum

$$= (x_{c,p}(\lambda), y_{c,p}(\lambda))_{\text{Rubin LSST-France - APC}} \quad S_p(\lambda) = T_{\text{inst},p}(\lambda) T_{\text{atm}}(\lambda | \theta_{a_2} S_{\text{resp}}(\lambda))$$

Forward model tested on simulations

39

Forward model tested on simulations

40

Rubin Auxiliary Telescope (Auxtel)

Fit of atmospheric parameters on ~4000 spectra since 2023/01 via Libradtran library [Emde et al., 2016]

Rubin Auxiliary Telescope (Auxtel)

Fit of atmospheric parameters on ~4000 spectra since 2023/01 via Libradtran library [Emde et al., 2016]

Type Ia supernova cosmology with LSST

SNIa Hubble diagram is built using standardized B band rest-frame magnitudes of supernovae with:

 $\mu=5\log_{10}(D_L(z)) \sim B - 3(B-V)$

- Back-of-the-envelope computations:
 - SNIa intrinsic dispersion: σ_{int}=0.15mag
 - with 35000 SNIa: $\sigma_{\mu} = \sigma_{int}/sqrt(35000) \sim 1 mmag$
- Photometric calibration systematics must be at most of 1mmag also to benefit from the full statistical power of the LSST survey

J. Neveu

Impact on cosmology

Is it important to know Earth's atmosphere transmission for cosmology?

- **Exercise:**
 - Simulation of a ZTF-II (wide) +
 SNLS5 + HSC (deep) =
 LEMAITRE survey
 - Noise-free, no intrinsic scatter, with PWV=5mm constant
 - Fit of SN lightcurves with PWV=3mm, 5mm or 7mm

Impact on cosmology

Impact on cosmology

Distance moduli μ are estimated using the B-band rest-frame magnitude of the SNIa... which shifts with redshift in Earth frame

Water seasonal effects on SNIa colors

Let's compare (i-z) SN color residuals due to PWV if average atmosphere is determined using field stars

Grating for convergent beam: holograms

48

Rubin LSST-France - APC

27/11/2024