Tomographic study of Anomalous cosmic dipole with Rubin LSST

Roya Mohayaee

IAP Sorbonne Université Paris

Collaboration with: Reza Ansari, Albert Bonnefous, Johann Cohen-Tanugi, Ken Ganga, Philippe Gris, Philippe Rosnet

Rubin LSST-France APC 27-29 novembre 2024

Cosmological principle

The Universe is **homogeneous** and **isotropic**

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$
 FLRW

Cosmological principle

The Universe is **homogeneous** and **isotropic**

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$
 FLRW

Axis (Bianchi) Homogeneous but anisotropic $ds^{2} = -dt^{2} + a_{x}(t)^{2}dx^{2} + a_{y}(t)^{2}dy^{2} + a_{z}(t)^{2}dz^{2}$ Centre (LTB) Inhomogeneous & isotropic $ds^{2} = -dt^{2} + X^{2}(r,t)dr^{2} + A^{2}(r,t)\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$ Szekeres model Inhomogeneous & anisotropic $ds^2 = dt^2 - (A'^2_{\parallel} \sin^2\theta + A'^2_{\perp} \cos^2\theta) dr^2$ $ds^{2} = dt^{2} - A^{2}dx^{2} - B^{2}(dy^{2} + dz^{2})$ $-(A_{\parallel}^2\cos^2\theta + A_{\perp}^2\sin^2)d\theta^2$ $-\left(A_{\parallel}^{2\prime}-A_{\perp}^{2\prime}\right)\sin\theta\cos\theta dr d\theta+-A_{\parallel}^{2}\sin^{2}\theta d\phi^{2}.$

Observational evidence for **isotropy** of the Universe

Cosmic microwave background

CMB restframe

Observational evidence for anisotropy of the Universe

The origin of the CMB dipole ?

Dipole is purely Kinematic Universe, at least up to a scale, must be anisotropic

The origin of CMB dipole Local anisotropy

Is our velocity in the rest frame of CMB equal to our velocity in the rest frame of **distant** sources ?

Colin, Mohayaee, Shafieloo, Sarkar, MNRAS 2012

2MRS redshift survey (Huchra etal 2005,...)

Based upon the 2MASS photometric galaxy catalog , Full sky ~25000 galaxies, selected with K_s<11.25 ~250 Mpc/h (z~0.08) deep , Distribution peaks at ~90 Mpc/h (z~0.03)

Local Anisotropy Distance reconstruction

Reconstruction uses Optimal Transport techniques

Convergence to the CMB rest frame

Convergece to the CMB restframe

Ellis & Baldwin, MNRAS 206:377,1984

Ellis and Baldwin 1984

Aberration and Doppler boosting

Dipole =
$$[2 + x(1 + \alpha)]v/c$$
.

 $dN/d\Omega(>S_{\nu})\propto S_{\nu}^{-x}$

 $S_{
u} \propto
u^{-lpha}$

Independent of distance to the source

DATA: NVSS+SUMSS

576461 Radio galaxies in 10 mjy <Flux < 1000 mjy

Searching for dipole

Example of hemispherical counting:

Here we fix the axis $\theta = \{0,90\}$ and turn ϕ every one degree

Dipole

Dipole direction:{RA=156°, DEC=-17°}compare toCMB DIpole {RA=168°, DEC=-7°}Dipole Amplitude :velocity of barycentre of solar system w.r.t. Radio galaxies restframe = 1097 km/svelocity of barycentre of solar system w.r.t. CMB restframe = 369 km/s

Wide-field Infrared Survey Explorer

WISE :(Wright et al. 2010) & NEOWISE (Mainzer et al. 2011)

CatWISE : Eisenhardt et al 2020

positions and the four-band photometry for 747,634,026 objects

Full-sky mid-infrared survey in:

3.4um (W1)	(2009 – present)
4.6um (W2)	(2009 – present)
12um (W3)	(2009 - 2010)
22um (W4)	(2009 - 2010)

Redshift distribution

The Dipole

Quasar Dipole = 0.01554, $(1, b) = (238^{\circ}. 2, 28^{\circ}.8)$.

CMB dipole. = 0.007, $(1, b) = (276^\circ, 30^\circ)$

MC simulations: Statistical significance

The null Hypothesis: An observer moving with a velocity of 369.82 km/s (CMB expectation) can see a dipole twice that of CMB" ! Rejected : p value of 5x10⁻⁷

5/1000000 MC simulations

Catalogues, Codes et Simulations pour l'analyse statistique à la disposition de la communauté Github : <u>https://doi.org/10.5281/zenodo.4431089</u>

ApJLetters 2021

$(5/10\ 000\ 000\ simulations = 4.9\ sigma)$

The null Hypothesis: An observer moving with a velocity of 369.82 km/s (CMB expectation) can see a dipole twice that of CMB" ! Rejected : p value of 5x10⁻⁷ 10⁷ random sky mimicking CatWISE same masks, estimator, flux....

ApJLetters 2021, 2022, Nature 2024

Do the Radio and the Infrared data agree ?

Joint Analysis: Infrared (Wise) and radio sources (NVSS) Statistical significance: 5.1 sigma

Shared sources: 1.4% of WISE quasars

Removed shared sources from WISE.

Kept sources in NVSS to maximize sources in smaller catalog.

WISE quasars in unshared regions removed randomly to preserve uniformity.

 \rightarrow Totally orthogonal catalogs.

WISE quasars

NVSS AGNs

Joint Analysis: Infrared (Wise) and radio sources (NVSS) Statistical significance: 5.1 sigma

Joint Analysis: Infrared (Wise) and radio sources (NVSS) Statistical significance: 5.1 sigma

Results confirmed by Bayesian analysis

Dam+23 performed a Bayesian analysis of the WISE quasar catalog from Secrest+21

- Poissonian likelihood
- Uniform priors
- \rightarrow Found D/D_{CMB} = 2.7

Marginalizing over all other parameters, CMB dipole amplitude rejected at **5.7** level

NA = mean count per sky pixel; Y_{ecl} = fractional offset of ecliptic latitude bias from value found by Secrest+21

Rubin LSST

- systematic scan for 10 years
- One million SNe Ia, distances !
- 20 billions galaxies
- Photometric Redshift

Rubin LSST

Courtesy: Reza Ansari

intrinsic/clustering dipole

Biasing

