Predictions of galaxy evolution scaling relations for Euclid

Quenched fractions, density, morphology

Cressida Cleland

Simona Mei, Francesco Shankar, Hao Fu, Daniel Roberts, Lumen Boco

passive-density

morphology-density

van der Wel+14

Cressida Cleland - LSST France - November 2024

Compact quiescent galaxies at z > 3

More compact that predicted?

Wright+23

Cressida Cleland - LSST France - November 2024

Wright+23

Compact quiescent galaxies at z > 3

More compact that predicted?

ETGs in clusters are larger than in the field?

Afanasiev+23

Compact quiescent galaxies at z > 3

More compact that predicted?

ETGs in clusters are larger than in the field?

Afanasiev+23

Morphology-density relation at z > 3?

How does environment affect QF?

Mei+23

Reversal of SFR-density relation at high-z?

Elbaz+07

Nantais+17

Nantais+17

Euclid Telescope Description

Wide survey - Deep is 26mag

Instrument	VIS		NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		$0.763 \times 0.722 \text{ deg}^2$				
Capability	Visual Imaging		NIR Imaging Photomet		etry	NIR Spectroscopy	
Wavelength range	550–900 nm		Y (920-	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm	
Sensitivity	24.5 mag 10σ extended source		$\frac{24 \text{ mag}}{5\sigma \text{ point}}$	24 mag 5σ point source	24 mag 5σ point source	3 10 ⁻¹⁶ erg cm-2 s-1 3.5σ unresolved line flux	
			Area (deg2)				
Wide Survey	15,000 (requi 20,000 (goa			uired) oal)			
Deep Survey			40		Euclid [Definition Study Rep	

EARLY RELEASE OBSERVATIONS

Image credit ESA/Euclid/Euclid Consortium/NASA/image processing by J.-C. Cuillandre, G. Anselm

An exciting time for galaxy statistics

- Euclid Wide Survey will observe 15,000 deg2 billions of galaxies
- Key epoch of the Universe Wide: $z\sim 2-3$
- High statistics of galaxies in a variety of environments
- Important to have predictions using different models to compare with observations

Euclid + LSST = 😃 👍

- 7000+ deg² of coverage
- Better object detection: higher resolution + deeper observations
- Photo-z measurements: NIR bands + depth and number of photometric bands
- Synergies with many science cases: cosmology, cluster mass estimates, transients, galaxy evolution, many more...

Rhodes et al. 2017

Different simulations and models

- GAEA (De Lucia+24)
 - Semi-analytic model
 - Treatment of AGN, stellar feedback, satellite galaxies
- MAMBO (Bolzonella; Girelli+20)
 - Abundance matching
 - Empirical
 - Assigns galaxy properties probabilistically
- DECODE (Fu; Roberts; Shankar)
 - Semi-empirical, statistical
 - Halo quenching
- Flagship (Euclid Consortium; Castander+24)
 - N-body, 4 trillion particles
 - Empirical colour distributions, clustering
- 0.5 < z < 3
- Euclidized: Y, J, H < 24 mag
- $M_{\star} > 10^{9.5}$

Flagship Dark Matter Halo Catalogue, Credits: EC; Yuzheng

Quenched Fractions Central galaxies, stellar mass

20-40% of massive galaxies quenched by z~2

Some slight differences in the models but consistent trends

* QF determined by sSFR < 0.3/t_H yr⁻¹, Franx+08

Quenched Fractions Central galaxies, halo mass

Differences between models: 20% more quenched galaxies in massive halos in GAEA and MAMBO compared to Flagship

DECODE quenches after a certain threshold in halo mass

Density measurements

- Nth-nearest neighbour (Mei+23, Postman+05)
 - N = 7
 - Normalised to D = 1 Mpc
- Redshift slice: dz=0.01

Quenched Fractions Central galaxies, local density

Clear relation with local density in GAEA, less so in MAMBO

Relation is reversed in Flagship, due to calibration on fields?

2d dependence Central galaxies, local density

GAEA: dependence on stellar mass and local density

MAMBO: not much dependence on local density

Flagship: Reversed dependence?

2d dependence Observability - SNR

Quenched fraction signal easily observed at z < 2

High density regions, low stellar mass more difficult

Effect of uncertainties

 $dz = 0.05 \times (1+z)$ (EC, Desprez+20)

 $d\Sigma \rightarrow error \ propagation$ with dz and Poissonian statistics

 $dM_{\star} = 0.3 dex$ (EC, Bisigello+23)

GAEA signal remains

MAMBO and Flagship, dependence on density disappears

Morphology Central galaxies, local density

ETG: B/T > 0.7 B/T = Bulge mass / stellar mass

Morphology-density relation present in GAEA, not so much in MAMBO

Relation is again reversed in Flagship

Looking forward

What
List of Q1 products agreed with SGS.
Data process readiness review (DPRR)
Internal Q1 release.
Quick Euclid release 1 (Q1)
ESLAB + EC meeting 2025
Internal DR1 release.
Internal DR1 release. Public Data Release 1 (DR1).
Internal DR1 release. Public Data Release 1 (DR1).
Internal DR1 release. Public Data Release 1 (DR1). Q2
Internal DR1 release. Public Data Release 1 (DR1). Q2 Internal DR2 release to EC
Internal DR1 release. Public Data Release 1 (DR1). Q2 Internal DR2 release to EC Public DR2 release 2 (DR2)
Internal DR1 release. Public Data Release 1 (DR1). Q2 Internal DR2 release to EC Public DR2 release 2 (DR2) Q3
Internal DR1 release. Public Data Release 1 (DR1). Q2 Internal DR2 release to EC Public DR2 release 2 (DR2) Q3 Q4
Internal DR1 release.Public Data Release 1 (DR1).Q2Internal DR2 release to ECPublic DR2 release 2 (DR2)Q3Q4Internal DR3

Looking forward

•	
When	What
June 2024	List of Q1 products agreed with SGS.
Nov. 2024	Data process readiness review (DPRR)
Nov. 2024	Internal Q1 release.
Mar 2025	Quick Euclid release 1 (Q1)
	ESLAB + EC meeting 2025
June 2025	Internal DR1 release.
Jun 2026	Public Data Release 1 (DR1).
March 2027	Q2
June 2027	Internal DR2 release to EC
June 2028	Public DR2 release 2 (DR2)
March 2029	Q3
March 2030	Q4
June 2030	Internal DR3

60 sq deg 1m+ galaxies

2500 sq deg 100m+ galaxies

Looking forward

	Ju No No Ma Ju Ju Ju DR1: errorbars scaled down Ju Ju Showed alre	to 50-20 % of what I eady n to 10-1 % of what I ady !!
	June 2028	Public DR2 release 2 (DR2)
ſ	March 2029	Q3
ſ	March 2030	Q4
	June 2030	Internal DR3
	lune 2031	Public DR3

60 sq deg 1m+ galaxies

2500 sq deg 100m+ galaxies

Summary

- Plan to apply same technique to LSST galaxies
- Euclid + LSST = lots of galaxies to study
- Expect huge number of quenched galaxies at logM* ~ 11
- Passive-density and morphology-density trends observed with high statistics

EARLY RELEASE OBSERVATIONS

https://docs.google.com/presentation/d/16 a17D1IUZAwvMqSJvjwayXE1DPI0mbarji vELD47mQ8/edit?usp=sharing

https://arxiv.org/pdf/1710.08489

