Rubin LSST France - APC 11/2024

High-redshift LBG selection for wide spectroscopic surveys

Constantin Payerne

Postdoc at Irfu, CEA-Saclay

Collaborators:

Christophe Yèche (Irfu) William d'Assignies Doumerg (IFAE) Vanina Ruhlmann-Kleider (Irfu) Anand Raichoor (LBNL)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!

The Dark Energy Spectroscopic Instrument

Instrument

- Wide field of view (8 deg2)
- Automated robotic positioners with 5000 fibers
- Spectrograph from 320 to 1020 nm

DESI Science project

- 14,000 deg² survey
- ~40 million spectroscopic redshifts in 5 years (< 2026)
- For different tracers for 0 < z < 4
- International collaboration (650 members, 69 institutions, 46 non-US)

Dark Energy Spectroscopic Instrument

5000 fiber

positioner

Mayall 4-m telescope

10 spectrographs

Cosmology with DESI and DESI-II

DESI-Y1 results in 2024!

- DESI 2024 VI: From the measurement of the BAO peak
 - z < 2.1: clustering of tracers
 - z > 2.1: QSO-Ly α forest
- DESI 2024 VII:« full-shape » (+RSD)
- Evidence of time varying $w_{\rm DE}$
- PNGs from LRGs+QSOs = $\sigma(f_{\rm NL}) \sim 10$
 - (Chaussidon+2024, yesterday on arXiv !)

Dark Energy Spectroscopic Instrument

DESI-II (> 2029): « High-z » cosmology

- Will focus on the high-z Universe (2 < z < 4.5)
 - Inflation: $\sigma(f_{\rm NL}) \sim 1$ (distinguish single and multi-field inflationary models)
 - σ (Sum neutrino mass) < 20 meV

irfu

cea

 DE fraction at 2% in the deep matterdominated regime - Rule out Early DE models

Target selection for Lyman Break Galaxies

LBGs

- Are most of z > 1.5 star-forming galaxies
- Show distinct flux decrement
 - Below the Lyman limit (912 A)
 - Below the Ly- α line (1216 A)
 - Possible Ly- α emission

Why LBGs to study the z > 2 Universe ?

wavelength (Angstrom)

Target selection

- z > 2.5, Ly-Break(s) lie in optical range
- $2.5 \le z_{\text{LBG}} \le 3.5$ lack of flux in the U-band
- Target selection: u-dropout u g > 0
- Privileged tracers for z > 2 ! So far only explored by QSO-Lyα forests
- Relies on high-quality U-imaging !

Dark Energy Spectroscopic Instrument

LBG samples from deep imaging

Target selection with deep imaging

- LBG selection on $\sim 4 \deg^2$ fields
- Using
 - CLAUDS (u-band, depth = 27.1)
 - HSC (grz, 27.4; 27.1; 26.3)
- U-dropout + ugr cuts + cut in r < 24.2

Results

- TS retained \sim 1100 targets per deg²
- 620 LBGs per squ. degrees after DESI spectro-z confirmation in 2.3 < z < 3.4
- So far, deep imaging data are available for 10-100 sq. degrees only

Dark Energy Spectroscopic Instrument

LBG target selection for DESI-II

DESI Legacy Surveys

- Grz data: available with DES, DeCALS, MzLS+BASS
- For LBGs: Missing U-band imaging !

Wide (U-band + ...) photometric surveys

- Rubin LSST (~soon !)
 - Overlap with DESI in the South (DR1> 2028)
- UNIONS
 - CFHT+Pan-STARR+Subaru (ugriz) in Hawaï
 - 5,000 deg^2 compatible with DESI
 - Deepest wide survey until \sim LSST-Y1/2
 - *ugriz* depth = {24.6; 25.5; 25.5; 24.2; 24.4}
- More challenging target selection at shallower depth !

Dark Energy Spectroscopic Instrument

[→] Payerne et al. <u>arXiv:2410.08062</u>

Random Forest approach

Beyond *u***-dropout**

- We can use Random Forest for classification $z \in [2.5, 3.5]$ (i.e. « LBGs »)
- Learn best splitting conditions (decision tree)
- Improve U-dropout by 10-15% (tested on CLAUDS)

In practice

- UNIONS data not available at this time !
- Degrade CLAUDS to UNIONS depth
- Classification: we use LePhare photoz's on COSMOS
- RF Features: 5 colors {*u, g, r, i, z*} $\rightarrow p_i$
- After RF, « quality threshold » cut:
 - Targets for DESI = { $p_i > P_{lim}$ }
 - Target density \sim 800 1500 deg^{-2}

Results

- Purity stable between 70% and 60%
- For $n_{\text{target}} = 1,100 \text{ per deg}^2$
 - $n_{\rm RF}(2.5 < z < 3.5) = 683 \, {\rm per} \, {\rm deg}^2$

$$\langle z \rangle_{\rm RF} = 2.85$$

8

Spectroscopic efficiency

Spectroscopic redshift efficiency

- i.e. our ability to recover LBG redshifts
- Spec-z determined with CNN + template fitting
 - Calibrated from DESI obs. in 2021 (CLAUDS+HSC TS)
 - Efficiency is 20% at z=2, and 80% at z=3.5
 - \sim 10% improvement from 2 to 4h of exposure time

For $n_{\text{target}} = 1,100 \text{ per deg}^2$

- $n_{\rm RF}(2.5 < z < 3.5) \sim 680 \, {\rm per} \, {\rm deg}^2$

$$- \frac{12.05}{n_{\text{spec}}(z > 2)} \sim 430 \text{ per deg}^2$$

$$\langle z | z > 2 \rangle_{\text{spec}} = 2.83$$

45% - For LBG science with DESI !

Dark Energy Spectroscopic Instrument

DESI observations on COSMOS in 2024 !

DESI observations in 2024

- TS provided with a purity = 0.6 (similar to 1,100 deg^{-2})
- DESI observed 1000 targets
- 420 LBG with secure spec-z
- Compatible with forecasts (approx 40%: spectro-z efficiency)
- $-\langle z_{\rm spec} \rangle = 3.0 \pm 0.3$

Dark Energy Spectroscopic Instrument

Forecasts

Forecasts (FishLSS)

- Redshift-space power spectrum - Bias $b_{\rm LDC}=3.3$
- Bias $b_{\rm LBG}$ =3.3
- DESI-II footprint=5,000 deg^2
- Redshift bin = 0.1
- Comparison with DESI main (blue)

Results

- $\sim 0.7\%$ precision for α_{\perp} and α_{\parallel} in 2.6 < z < 3

- \rightarrow 2% precision on z > 2 DE fraction Primordial Universe

- Through the large-scale dependent bias
- $\sigma_{\rm f_{\rm NL}} pprox 7$ (CMB: $f_{\rm NL} = 0.9 \pm 5.1$)

Dark Energy Spectroscopic Instrument

Summary

Lyman Break Galaxies

- Are promising tracers to study the high-z Universe (z > 2)
- U-imaging is crucial to detect LBGs
 - Deep imaging CLAUDS+HSC: Ruhlmann-Kleider et al. arXiv:2404.03569
 - *U-dropout* 620 LBG/deg² after DESI spectro-z confirmation in 2.3 < z < 3.4

Target selection of LBGs for DESI-II

- Wide U-band (LSST; South, UNIONS; North) are essential for Stage-V spectro. surveys
- UNIONS-like: Payerne et al. arXiv:2410.08062
 - Degraded photometry to UNIONS depths
 - RF: **430** LBG/deg² for z > 2 with secure spectro. redshifts
 - Confirmed with DESI dedicated observations on COSMOS
- LSST-like (simple rescaling of LSST-Y10 depths)
 - LSST-Y1: **470** LBG/deg² for z > 2 with secure spectro. redshifts
 - LSST-Y5: 660 LBG/deg² for z > 2 with secure spectro. redshifts

Forecasts on cosmology with DESI-II (UNIONS-based TS)

- Strong constraining power at $z \sim 2.8 3$
- Competitive constraints on A. P. parameters wrt to Lylpha (same z range), and on $f_{
 m NL}$
- LSST focus: Calibration of photoz methods with high-z samples
- LSST focus: n(z) for LBG magnification high-z Cluster mass calibration !

DESI timeline

Dark Energy Spectroscopic Instrument

C. Payerne CEA/DPhP/Irfu Journées Rubin LSST France 11/2024

Slide 13

Neutrinos in cosmology

Dark Energy Spectroscopic Instrument

C. Payerne CEA/DPhP/Irfu Journées Rubin LSST France 11/2024

Slide 14