

D. Godos-Valencia^{1,5,*}, L. Acosta ^{1,6}, P. Ascher ², B. Blank ², J. Giovinazzo ², F. de Oliveira ³, C. Fougères ⁴, A.M. Sánchez-Benítez ⁵. ¹Instituto de Física UNAM, Mexico; ²LP2i-Bordeaux, France; ³GANIL, France; ⁴CEA/DAM, France; ⁵CEAFMC Universidad de Huelva, Spain, ⁶Instituto de Estructura de la Materia, CSIC, Spain. (^{*}dgodosv@gmail.com)

First ASTRANUCAP Workshop November 18-19, 2024

Introduction $^{44}\mathrm{Ti}$ relevance in Astrophy	Experiment ysics	Results and interpretation Objectives	Conclusions	Diapositivas extra β -delayed proton emission
4.4				

⁴⁴Ti relevance in Astrophysics

⁴⁴Ti nucleosynthesis

- ⁴⁴Ti and its eventual decay chain is produced in type II supernovaes (CCSN). The γ photons emitted during the decay chain (67.9, 78.4, 1157 keV) are observed by telescopes for gamma-astronomy (i.e. INTEGRAL), making ⁴⁴Ti a good tracer for SN events.
- ⁴⁴Ti abundancy is quite sensitive to the ⁴⁵V(p,γ)⁴⁶Cr reaction rate: the higher the reaction rate, the smaller the ⁴⁴Ti abundancy (L.-S. The, et. al., ApJ 504, 500-515 (1998)).

	Experiment	Results and interpretation Objectives	Conclusions	Diapositivas extra eta -delayed proton emission
Objectives				

Objectives

- To explore unknown excited states of $^{46}{\rm Cr},$ by means of the β^+ -decay of the $^{46}{\rm Mn}.$
- Obtain the energy of new resonant contribution(s) to the ${}^{45}V(p,\gamma){}^{46}Cr$ reaction due to new excited state(s) of ${}^{46}Cr$.

Figura: C. Dossat, et. al., Nucl. Phys. A 792, 18-86 (2007).

Introduction ⁴⁴ Ti relevance in	Experiment Astrophysics	Results and interpretation Objectives	Conclusions	Diapositivas extra eta -delayed proton emission

 β -delayed proton emission

$\beta\text{-delayed}$ proton emission

 β -delayed proton emission of 46 Mn Decay allows us to seek excited states of the daughter nucleus 46 Cr and thus, is an indirect method for measuring resonant contributions to the reaction rate of 45 V(p, $\gamma)^{46}$ Cr. (That allows us to study the inverse reaction without building a 45 V target for populating 46 Cr* states).

Figura: Adapted from L. Trache, et. al., AIP Conf. Proc 1409-1, 67-70 (2011). 🖹 👘 🚊 🚽 🔿 < إ

Conclusions

Diapositivas extra Experimental analysis

Facilities and experimental setup

Beam production at LISE@GANIL for E666 experiment

Data was taken from the experiment "Isospin mixing in pf-shell proton emitters" (Code: E666, Spokesperson: Bertram Blank, from CEN-BG, France) developed using the fragment separator LISE@GANIL (Caen, France).

Introduction Facilities and experimental set	Experiment up	Results and interpretation	Conclusions	Diapositivas extra Experimental analysis
Experimental analysis				

Experimental analysis

- 1. As a first step calibrations for the DSSSD X & Y strips, and for the HPGe clover sections were performed.
 - 1.1 For the DSSSD, a triple α -source (²³⁹Pm, ²⁴¹Am y ²⁴⁴Cm) was used.
 - 1.2 For the HPGe clovers, we use ${}^{56+60}$ Co, 207 Bi, and 133 Ba+ ${}^{'137}$ Cs sources.

- 2. Later, the ions of interest were selected, $^{46}\rm{Mn},$ by means of Energy loss vs Time of Flight (ToF) 2D histograms.
- 3. Finally, decay events corresponding to the 46 Mn were identified using spatial and time correlations between the implantation and the decay signals.

- ロト - (四)ト - (日)ト - (日)ト - (日)

R	esu	lts	ā

Experimental analysis

⁴⁶Mn identification

 We use the Time of Flight (ToF) in the 1D6 detector to identify the isotope of interest, ⁴⁶Mn, among others.

Experiment

• These events were selected using graphical cut filters, one for the ToF with respect to the High-Frequency Signal of the Cyclotron (top figure) and the other with respect to the time given by CAVIAR detector (bottom figure). More than 3.15×10^5 events of 46 Mn were selected during approximately 71.5 hrs of data acquisition.

D. Godos-Valencia

Introduction Facilities and experimental set	Experiment	Results and interpretation	Conclusions	Diapositivas ext Experimental analys
Experimental analysis				

Time-correlated events

The time correlations between the $\rm ^{46}Mn$ implantation events and the decay ones were established in the following way:

Introduction Results and interpretation Experiment

Results and interpretation

Conclusions

Results and interpretation

46 Mn β -decay curve

The half-life was obtained applying a E > 1500 keV filter and the systematic error was set as the difference between this value and the one with a E > 1000 keV filter.

ntrodu	ction			
Results	and	inter	preta	itio

Experiment

Results and interpretation

Results and interpretation

β -delayed proton energy spectra

Introduction Results and interpretation

Results and interpretation

Efficiency evaluation for β and γ detection

Results and interpretation

γ detection efficiency of HPGe clovers

- The peaks of the γ -calibration sources were used: ${}^{56+60}$ Co, 207 Bi, and 133 Ba+ 137 Cs.
- The efficiency in each peak was found using the equation:

$$\varepsilon_{\gamma} = \frac{N_{\gamma} * \mathsf{Div}}{I_{\gamma} A T_{\mathsf{run}} (1 - \tau)}$$

• Then we fit the following fuction $f(E) = \exp a + b \ln E$ to get the γ efficiency detection at any energy value.

β detection efficiency of DSSSD strips

- We used the decay curves of the pure β emitters: ⁴⁶Cr and ⁴²Ti (within the cocktail beam).
- While doing the exponential fit, the total number of detected by the DSSSD strips N_{β} was counted.
- Then the β detection efficiency was obtained following the equation:

$$\varepsilon_{\beta} = \frac{N_{\beta}}{N_{\rm imp}(1-\tau)}$$

イロト イヨト イヨト イヨト

ntroduction	Experiment	Results and interpretation	Conclusions	Diapositivas extra
Results and interpretation				

β -delayed γ energy spectra

D. Godos-Valencia

Peak intensities

Measuring $\beta - \gamma$ intensities

• To measure the $\beta - \gamma$ intensities of the γ peaks we use the equation:

$$I_{\beta,\gamma} = \frac{\mathsf{N}_{\gamma}}{\varepsilon_{\beta} \ast \varepsilon_{\gamma} \ast \mathsf{N}_{\mathsf{imp}} \ast (1-\tau)},$$

• where N_{γ} stands for the number of γ s detected, N_{imp} for the number of implantation events, τ for the dead time, ε_{β} for the β detection efficiency, and ε_{γ} for the γ detection efficiency.

Measuring proton $-\gamma$ intensities

• In the case of the p- γ intensities, we use the equation:

$$I_{p,\gamma} = \frac{\mathsf{N}_{\gamma}}{\varepsilon_{\gamma} * \mathsf{N}_{\mathsf{imp}} * (1-\tau)},$$

• where ε_p , the proton detection efficiency, can be considered as 1.

イロト イヨト イヨト イヨト

Diapositivas extra

Introduction Results and interpretation Experiment

Results and interpretation

Results and interpretation

γ -peak intensities

Gammas		⁴⁶ Mn				
No	Energy (keV)	I _{Dossat} (%)	IPresent work(%)	Туре	Process	
1	54.4		0.2(1)	45 V: $5/2^{-}$ to $7/2^{-}$	$I_{p,\gamma}$	
2	329.4	11.3(11)	6.4(2)	45 V: $3/2^+$ to $3/2^-$	$I_{p,\gamma}$	
3	410.2	6.7(7)	4.4(3)	45 V: 5/2 ⁺ to 3/2 ⁺	$I_{p,\gamma}$	
4	475.2	1.7(5)	1.9(2)	45 V: 7/2 $^+$ to 5/2 $^+$	$I_{p,\gamma}$	
5	739.7	2.4(8)	2.0(1)	45 V: 5/2 ⁺ to 5/2 ⁻ ?	$I_{p,\gamma}$	
6	796.1	1.6(4)	1.8(5)	45 V: 5/2 ⁺ to 7/2 ⁻ ?	$I_{p,\gamma}$	
7	885.7	2.2(7)	1.3(5)	45 V: 7/2 ⁺ to 3/2 ⁺ ?	$I_{p,\gamma}$	
8	892.5	25(6)	30(6)	46 Cr: 2^+ to 0^+	$I_{\beta,\gamma}$	
9	1094.7	26(7)	24(6)	46 Cr: 4^+ to 2^+	$I_{\beta,\gamma}$	
10	1118.0	1.5(10)	1.1(2)	45 V: 9/2 ⁺ to 5/2 ⁺ ?	$I_{p,\gamma}$	
11	1272.6	3.5(5)	1.4(1)	45 V: 7/2 ⁺ to 7/2 ⁻	$I_{p,\gamma}$	
12	1322.1	4.9(11)	2.8(1)	45 V: $9/2^{-}$ to $7/2^{-}$	$I_{p,\gamma}$	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Intr	odu	ction			
Res	ults	and	inter	pret	ation

Experiment

Results and interpretation

Conclusion

Results and interpretation

Proton-peak intensities

To calculate the proton-peak intensities we use that $I_p = N_p/(N_{imp}*(1-\tau))$

Protons		⁴⁶ Mn			
No	Energy (keV)	I _{Dossat} (%)	I _{This work} (%)	Process	
1	1224	1.8(3)	0.1(5)	;?	
2	2090		1.8(3)	decay of 45 Cr ?	
3	2358	1.7(4)	5.0(3)	46 Cr IAS to 45 V $^{9/2^+}$?	
4	3003	6.5(9)	8.8(3)	46 Cr IAS to 45 V $^{7/2^+}$	
5	3494	3.5(6)	4.4(2)	46 Cr IAS to 45 V $^{5/2^+}$	
6	4254	5.5(9)	3.8(1)	46 Cr IAS to 45 V gs	

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

Results and interpretation

Introduction

$p-\gamma$ coincidences

We also studied the p- γ coincidences by applying selection windows for the gamma peaks in the proton energy spectrum:

D. Godos-Valencia

Introduction	Experiment
Results and interpretation	

Results and interpretation

p- γ coincidences for 40-500 keV $\gamma{\rm 's}$

Introdu	ction			
Results	and	inter	preta	tior

Experiment

Results and interpretation

Results and interpretation

p- γ coincidences for 550-1020 keV $\gamma{\rm 's}$

Eproton vs Egamma coincidences

D. Godos-Valencia

Introdu	ction	I
Results	and	interpretation

Experiment

Results and interpretation

Results and interpretation

p- γ coincidences for 1020-1480 keV $\gamma{\rm 's}$

Introduction Results and interpretation	Experiment	Results and interpretation	Conclusions	Diapositivas extra

${\rm p}{\rm -}\gamma$ coincidences

Another way to see the p- γ coincidences was by applying energy thresholds for the minimum proton energy in the γ energy spectrum:

tion	Experiment	Results and interpretation	Conclusio
and interpretation			

Introduc

Results

p- γ coincidences

With the information of the p- γ coincidences we could draw the following decay scheme:

D. Godos-Valencia

Introduction

Conclusions and future work

- The 46 Mn β -decay curve and therefore its half-life was obtained. The half-life is compatible with previous results from the literature.
- Energy spectra for protons (400-6000 keV) and γ photons (40-500 keV and 550-1500 keV) related to the ⁴⁶Mn β -decay were also obtained. Those spectra are also compatibles with J. Giovinazzo, et al. and Dossat, et al. results, with greater statistic than either two publications.
- The decay curves of pure β emitters, ⁴²Ti and ⁴⁶Cr, were analyzed also obtaining the β detection efficiency. Discrepancies with the literature are being analized.
- Next steps of the analysis:
 - 1. To further analyze the p- γ correlations in order to identify which γ peak its emitted at a specific proton energy.

2. To apply Shell Model, also looking into the mirror nuclei $^{46}{\rm Ti}$, to have a list of possible excited states.

イロト イボト イヨト イヨト

Introduction	Experiment	Results and interpretation	Conclusions	Diapositivas extra
		Acknowledgments		

 This work is partially supported by DGAPA-UNAM IG101423 and CONACyT 314857 projects.

• We thank support from Centro de Estudios Avanzados en Física, Matemáticas y Computación of the University of Huelva CEAFMC-UHU.

• Special thanks to **ASTRANUCAP** organizers for making this talk possible.

イロト イヨト イヨト イヨト

 Table obtained from L -S The, et. al., ApJ 504, 500-515 (1998).

TABLE 5

ORDER OF IMPORTANCE OF REACTIONS PRODUCING ${}^{44}\text{Ti} \text{ at } n = 0^{a}$

Reaction	Slope
⁴⁴ Ti(α, p) ⁴⁷ V	-0.394
$\alpha(2\alpha, \gamma)^{12}C$	+0.386
⁴⁵ V(p, γ) ⁴⁶ Cr	-0.361
40Ca(α, γ) ⁴⁴ Ti	+0.137
⁵⁷ Co(p, n) ⁵⁷ Ni	+0.102
${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+0.037
⁴⁴ Ti(α, γ) ⁴⁸ Cr	-0.024
$^{12}C(\alpha, \gamma)^{16}O$	-0.017
⁵⁷ Ni(p, γ) ⁵⁸ Cu	+0.013
${}^{58}Cu(p, \gamma){}^{59}Zn$	+0.011
${}^{36}Ar(\alpha, \gamma){}^{40}Ca$	+0.008
⁴⁴ Ti(p, γ) ⁴⁵ V	-0.005
⁵⁷ Co(p, γ) ⁵⁸ Ni	+0.002
⁵⁷ Ni(n, γ) ⁵⁸ Cu	+0.002
⁵⁴ Fe(α, n) ⁵⁷ Ni	+0.002
${}^{40}Ca(\alpha, p){}^{43}Sc$	-0.002

tions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates.

THE ASTROPHYSICAL JOURNAL, 898:5 (12nn), 2020 July 20 0 2020. The American Astronomical Society. All rights reserved

https://doi.org/10.3847/1538-4357/ab9745

Sensitivity of 44Ti and 56Ni Production in Core-collapse Supernova Shock-driven Nucleosynthesis to Nuclear Reaction Rate Variations

Shiv K. Subedi 90. Zach Meisel 00. and Grant Merz Institute of Nuclear & Particle Physics, Department of Physics & Astronomy, Ohio University, Athens, OH 45701, USA; ss383615@ohio.edu, meisel@ohio.edu Received 2020 February 25: revised 2020 May 16: accepted 2020 May 26: published 2020 July 16

Abstract

Recent observational advances have enabled high resolution mapping of 44Ti in core-collapse supernova (CCSN) remnants. Comparisons between observations and models provide stringent constraints on the CCSN mechanism. However, past work has identified several uncertain nuclear reaction rates that influence 44Ti and 56Ni production in postprocessing model calculations. We evolved one-dimensional models of 15 Mov. 18 Mov. 22 Mov, and 25 Mov stars from zero age main sequence through CCSN using Modules for Experiments in Stellar Astrophysics and investigated the previously identified reaction rate sensitivities of 44 Ti and 56 Ni production. We tested the robustness of our results by making various assumptions about the CCSN explosion energy and mass cut. We found a number of reactions that have a significant impact on the nucleosynthesis of ⁴⁴Ti and ⁵⁶Ni, particularly for lower progenitor masses. Notably, the reaction rates ¹³N(a, n)⁴O, ¹⁷F(a, n)²⁰Ne, ⁵³Fe(a, n)⁵⁵Co, ⁵⁴Ni(a, n)⁵⁷Co, ⁵⁷Ni(a, n)⁵⁷Co, ⁵⁶Co(n, n)⁵⁶Ni

- Not ${}^{45}V(p,\gamma){}^{46}Cr$, but ${}^{47}V(p,\gamma){}^{48}Cr!$
- 39 K(p, γ) 40 Ca and 39 V(p, α) 36 Ar also affect 44 Ti abundancy.

* Order of importance of reac-

D. Godos-Valencia

Introduction	Experiment	Results and interpretation	Conclusions	Diapositivas extra

- ⁴⁴Ti is produced when a shock-wave after the core-collapse reaches the α -rich region in the cooling phase ($1 < T_9 < 5$).
- As $\overrightarrow{J} = \overrightarrow{\ell} + \overrightarrow{j_1} + \overrightarrow{j_2}$ and $\Pi = \pi_1 \pi_2(1)^{-\ell}$, for ${}^{45}\text{V+p} \rightarrow {}^{46}\text{Cr}^*$ and only considering $\ell = 0, 1$ resonant capture then the candidates for resonances are:

$$J^{\pi}(^{45}\mathsf{V}_{\mathsf{gs}}) = 7/2^{-}; \quad J^{\pi}(p) = 1/2^{+} \Rightarrow J^{\pi}(^{45}\mathsf{V}_{\mathsf{gs}}) = 2^{+}, 3^{+}, 4^{+}, 5^{+}, 3^{-}, 4^{-}$$

• On the other hand, allowed β -decay transitions follows:

$$\begin{split} \Delta J &= 0; \quad \pi_i = \pi_f \quad \text{for Fermi} \\ \Delta J &= 0, 1; \quad \pi_i = \pi_f \quad \text{for Gamow-Teller} \end{split}$$

As $J^{\pi}({}^{46}\text{Mngs}) = 4^+$ and considering only allowed transitions: $J^{\pi}({}^{46}\text{Cr}^*) = 3^+, 4^+, 5^+$ (2⁺,3⁻ and 4⁻ could be sufficiently populated but they are strongly inhibited).

Introduction

Detection setup

- The primary beam was a ⁵⁸Ni²⁶⁺ at 74.5 MeV/u, which collided with a 230.6 mg/cm² thick ^{nat}Ni target.
- With the LISE separator elements, the isotopes to be implanted in the detectors array were selected.
- The detectors array used during the experiment is shown:

Gamma efficiency curve

The gamma efficiency curve obtained for the analysis is shown in the next figure:

Charged particle espectra

The charged particle spectra obtained by Dossat and Giovinazzo are presented:

D. Godos-Valencia

Detectores de partículas cargadas. Detectores Si y SiLi

- 1. Los detectores identificados por los nombres 1D6 y 2D6 se usaron como ΔE . La energía depositada en estos detectores depende de Z, A y la velocidad de la partícula incidente y se describe por medio de la ecuación de Bethe-Bloch.
- 2. El SiLi fue usado para detener los fragmentos del haz que no se hubieran detenido en los detectores previos. También fue usado como Veto para descartar isótopos de 46 Mn que no fueron implantados en el DSSSD.
- 3. El 1D6 cuenta con un grosor de 300 μm ; mientras que el 2D6 tiene un grosor de 297 μm y el SiLi de 500 $\mu m.$

イロト イボト イヨト イヨト

Detectores de partículas cargadas. Detector DSSSD

El **Double-Sided Si Strip Detector** (DSSSD) se compone de dos placas divididas en secciones P y N, las cuales están a su vez divididas en 16 tiras o Strips (unas vertical y otras horizontalmente). La información de las señales de las tiras X-Y se pueden usar para formar una cuadrícula en la etapa de procesamiento de datos; cada píxel de la cuadrícula corresponde a un cuadro de 3 × 3 mm² de área. El DSSSD tiene un grosor de 316 μ m.

Figura: O. Tengblad, Nucl. Instrum. Methods. Phys. Res. B, 525:3, 458-464, (2004)

Detectores de fotones γ

El sistema de detección de fotones se compone por 4 clovers etiquetados del 1 al 4 para su distinción. Éstos, a su vez, se dividen en 4 secciones denotadas por las letras A, B, C, D. Cada sección del clover consiste en un cristal altamente puro de Ge (HPGe).

Adquisición de datos

Se tienen varias señales de trigger (1D6, 2D6, DSSSD y SiLi). En caso de que alguna de ellas se dispare, se almacenan los datos de todos los detectores junto con los triggers disparados en un vector concreto para cada suceso. En total el DSSSD produce unas 32 señales, las cuales deben ser rescatadas por el DAQ.

