Understanding ²⁶Al Production in Classical Novae: Search for New States in ²⁶Si

Ignasio Wakudyanaye

Grand Accélérateur National d'ions Lourds, Caen, France University of Caen Normandie

ASTRANUCAP WORKSHOP (NOV 2024)

Outline

Abundance of ²⁶Al in the Galaxy

Nucleosynthesis of ²⁶Al

Motivation

The Experiment

Preliminary Results

Outlook

²⁶Al Abundance in the Galaxy

γ -ray observations

1979-1980: Galactic center emission

Mahoney et al. 1982

1.809 MeV γ-ray emission in the galactic plane
<u>Galactic abundance of ²⁶Al ~</u>2.8M₂

Meteoritic observations

1976: Allende meteorite

- Ratio ${}^{26}Al/{}^{27}Al = 5 \ 10^{-5}$ in Early SS
- T_{1/2} (²⁶Al) << T_{Galaxy} ⇒ ²⁶Al is actively produced in the galaxy !!! Source of ²⁶Al???

²⁶Al Nucleosynthesis

²⁶Al is produced in extreme astrophysical environments such as:

Wolf-Rayet stars

AGB Stars: The Helix Planetary Nebula

Core collapse supernova: The Crab nebula

Nova outbursts

These environments cover the temperature range 0.05 GK < T < 1.5 GK, relevant for the nucleosynthesis of ²⁶Al. How much does each site contribute to the total galactic abundance???

²⁶Al Nucleosynthesis in Novae Environments

In novae environment there are two important reactions networks:

²⁶Al Nucleosynthesis in Novae Environments

In novae environment there are two important reactions networks:

 $^{25}AI(\beta^{+}v)^{25}Mg(p,\gamma)^{26}AI^{gs}(\beta^{+}v)^{26}Mg^{*}(\gamma)^{26}Mg^{gs}$: $E_{\gamma} = 1.809 \text{ MeV}$ $^{25}AI(p,\gamma)^{26}Si(\beta^{+}v)^{26}AI^{m}(\beta^{+}v)^{26}Mg^{gs}$: no gamma-ray emission

Motivation

Precise information of nuclear physics observables is required to accurately model the production of ²⁶AI through the reaction ²⁵AI(p, γ) ²⁶Si.

Proton Resonance States in ²⁶Si

7

Stellar Reaction Rates

 \rightarrow States above S_p in ²⁶Si are critical to the calculation of the ²⁵Al(p, γ)²⁶Si reaction rate.

 \rightarrow J^T = 3⁺ state dominates the total reaction rate at temperatures above 0.2 GK, owing to its large resonance strength (I = 0, no centrifugal barrier).

Experimental Set-Up

- \rightarrow 99.85 % target purity
- \rightarrow (150 $\mu g/cm^2$ +250 $\mu g/cm^2$) ^{26}Mg target thickness
- \rightarrow 0.2 mm Ta backing (beam stopped)

\rightarrow 2 clovers + 2 coaxials Ge detectors used for $\gamma\text{-rays}$

EDEN Array (neutrons)

→ 36 NE213 (Φ 20 cm x L 5 cm) modules → $\Delta\Omega$ = 350 msr → ε = 50% @ E_{kn} = 1 MeV & 30% @ E_{kn} = 6 MeV

Preliminary Results

Calibrated ToF (EDEN #10) 2000 -Fast Component [Channels] 10² ¹⁶⁰⁰ **2**+ .+ ¹⁵O(g.s) y-rays Counts 1200 **Neutrons** 0<mark>⊾</mark> Slow Component [Channels] ToF [ns] gamma-ray transitions (Det #2) **Excitation Energy (EDEN10)** 10⁴ 10⁵ Counts/keV Counts 10³ 10³ 10² 10² Energy (keV) Energy (MeV)

Particle Identification Spectrum

Many γ -ray transitions from known states in ²⁶Si were observed.

Preliminary Results

Outlook

- → Some known states in 26 Si have been confirmed.
- → Search for new states and transitions in 26 Si is ongoing
- \rightarrow Angular distribution for the γ -ray transitions to determine spins
- → Determine the ${}^{25}Al(p,\gamma) {}^{26}Si$ reaction rate
- → Run astrophysical simulations with our new reaction rate

Thank you for your attention !!!!

PhD director: De Oliveira, François (GANIL) Encadrant: Nicolas de Séréville (Orsay)