ASTRANUCAP 2024

Structure beyond the neutron threshold in the nuclei of interest for the r-process produced at ALTO

Emile Cantacuzène

Under the supervision of David Verney

November 2024 IJCLab – Nuclear pole - Team FIIRST

Outline

I. Physics case

- a. Beta-delayed neutron emission
- b. The ⁸⁴Ga case

II. Beta-delayed 2-neutron emission of ⁸⁴Ga

- a. Experimental setup
- **b.** Analysis
- c. Results

III. Monte-Carlo simulations of TETRA

- a. Geometry and physics lists
- b. Ring ratio method
- c. Results

Beta-delayed neutron emission

- $Q_{\beta-n} = Q_{\beta} - S_n$: Available energy for neutrons

Cf. Roberts et al. (1939)

• P_n : Probability for the daughter nucleus to emit at least one neutron after the beta decay

Cf. Verney et al. Physical Review C 95 (2017) Cf. Heidemann et al. Physical Review C 108 (2023) Cf. Xu et al. Physical Review Letters 133 (2024)

Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sr	S																					
Rb	R																					
Kr	K																					
Br	B																					
Se																						
As																						
Ge																						
Ga																						
Zn																						
Cu																						
Ni																						
Co	Co	Со	Co	Co	Co	Co	Co	Со	Co	Co				-								
Fe																						
Mn]																			

Gamow-Teller « Doorway » transitions

 $\Delta J = 0, 1$ $\Delta L = 0$

- Near the doubly magic ⁷⁸Ni
- High probability of emitting 2 neutrons after beta decay
- A first tentative to explain 2–n emission in the doorway approach
- r-process modeling consequences

An ISOL facility

An ISOL facility

- Electron linear accelerator

- 50 MeV energy
- 10 μ A current

An ISOL facility

No contribution in neutron deficient isotopes

- Electron linear accelerator

An ISOL facility

- Electron linear accelerator

- 50 MeV energy
- 10 μ A current

- Thick UCx target

- Photofission
- Heated up to 2000 °C

- Laser ionization

- Selection in Z

An ISOL facility

- Electron linear accelerator

- 50 MeV energy
- 10 μA current

- Thick UCx target

- Photofission
- Heated up to 2000 °C

- Laser ionization

- Selection in Z

- Mass separation

- Selection in A

An ISOL facility

- Electron linear accelerator

- 50 MeV energy
- 10 μA current

- Thick UCx target

- Photofission
- Heated up to 2000 °C
- Laser ionization
 - Selection in Z
- Mass separation
 - Selection in A

Decay stations

- Conversion electron (COeCO)
- Neutron counter (TETRA)
- Gamma spectroscopy (BEDO)

For beta-delayed neutron emission studies

For beta-delayed neutron emission studies

Collection – Decay cycles

- Beam implanted on a mylar band
- No contamination from descendants with tape station

For beta-delayed neutron emission studies

4πβ plastic scintillator

- Detection of $\boldsymbol{\beta}$ electrons
- BC408 plastic linked to a PM
- Around 70% efficiency

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

For beta-delayed neutron emission studies

High purity Germanium detector

- Detection of γ rays
- Coaxial geometry
- 2 cm away from implementation point
- 0.66% efficiency @ 964.1 keV
- 2.4 keV resolution (FWHM) @ 964.1 keV

For beta-delayed neutron emission studies

Cf. Testov et al. Nuclear Instruments and Methods in Physics Research A 815 (2016)

Slow neutron counter TETRA

- Detection of neutrons
- HDPE moderator and 80 ³He gas cells
- Around 52% efficiency
- No energy information

$n + {}^{3}He \rightarrow p + {}^{3}H + 765 \text{ keV}$

Outline

I. Physics case

- a. Beta-delayed neutron emission
- b. The ⁸⁴Ga case

II. Beta-delayed 2-neutron emission of ⁸⁴Ga

- a. Experimental setup
- **b.** Analysis
- c. Results

III. Monte-Carlo simulations of TETRA

- a. Geometry and physics lists
- b. Ring ratio method
- c. Results

Overview

•
$$P_n \equiv P_{1n} + P_{2n} + \dots + P_{in}$$
 • $< n > \equiv P_{1n} + 2P_{2n} + \dots + iP_{in}$

Overview

•
$$P_n \equiv P_{1n} + P_{2n} + \dots + P_{in}$$
 • $< n > \equiv P_{1n} + 2P_{2n} + \dots + iP_{in}$

•
$$P_{1n} = \frac{N_{1n}}{N_{\beta}} \times \frac{\varepsilon_{\beta}}{\varepsilon_{n}}$$

• $P_{2n} = \frac{N_{2n}}{N_{\beta}} \times \frac{\varepsilon_{\beta}}{\varepsilon_{n}^{2}}$

Overview

•
$$P_n \equiv P_{1n} + P_{2n} + \dots + P_{in}$$
 • $< n > \equiv P_{1n} + 2P_{2n} + \dots + iP_{in}$

Overview

•
$$P_n \equiv P_{1n} + P_{2n} + \dots + P_{in}$$
 • $< n > \equiv P_{1n} + 2P_{2n} + \dots + iP_{in}$

Calibration isotope : ⁸²Ga

Two neutron events

State populated	2+ (1348 keV)	
Absolute branching ratio (%)	95 ± 19 %	

Interpretation under discussion !

Cf. Yokoyama et al. Physical Review C 108 (2023)

Outline

I. Physics case

- a. Beta-delayed neutron emission
- b. The ⁸⁴Ga case

II. Beta-delayed 2-neutron emission of ⁸⁴Ga

- a. Experimental setup
- **b.** Analysis
- c. Results

III. Monte-Carlo simulations of TETRA

- a. Geometry and physics lists
- b. Ring ratio method
- c. Results

Geometry and physics list

Geant4

MCNP

MCNP has shown results closer to experimental data

Full geometry implemented

- 80 cells arranged in 4 rings
- Thermal neutron physics
- Realistic pressure in cells (around 2bars)
- 99% 3 He and 1% CO₂ mixture

Ring ratio method

Neutron energy distribution

Simulated spectra

Ē

2

 $f(E) \propto \sqrt{E}e^{-\frac{E}{T}}$

- Maxwellian approximation at first order

cf. "Evaluation and Application of Delayed Neutron Precursor Data" Michaele Clarice Brady

Ring ratio method

Efficiency as a function of mean neutron energy

Ring ratio method

Ring ratios as a function of mean neutron energy

- D : Deviation from a pure Maxwellian distribution

$$\overline{E} = 1.3 \text{ MeV}$$
 $D = 0.29$

		R2/R1	R3/R1	R4/R1	R3/R2	R4/R2	R4/R3
Ring	Ratio (exp)	0.73	0.43	0.3	0.58	0.42	0.71
Energ	gy (MeV)	0.33	0.61	1.1	0.91	1.8	3.2

Results

Efficiency validation

Coherent results with measured efficiencies

Conclusion and perspectives

- Measurement of the absolute branching ratio of the ⁸⁴Ga beta-2n branch.
- Development of a new technique to measure mean neutron energies using slow neutron counters.
- Measurement of mean neutron energies of ⁸²Ga and ⁸⁴Ga.
- MONSTER at Alto expriments planned in February 2025 in order to directly measure beta-delayed neutrons energy spectra.

Backup Formula

•
$$\mathbf{D} = \sqrt{(\mathbf{R}_1^{\exp} - \mathbf{R}_1^{\max})^2 + \dots + (\mathbf{R}_6^{\exp} - \mathbf{R}_6^{\max})^2}$$

•
$$\lambda_{\text{rand }2n} = \lambda_{1n}^2 \theta e^{-\lambda_1 \theta}$$

Calibration isotope : ⁸²Ga

$4\pi\beta$ efficiency

Single and β conditionned γ spectra

Energy (keV)	216.6	530.4	711.4	867.2	1348.5	$\overline{c}_{1} = 73 \ 1 \pm 0 \ 1 \ 0/2$
4πβ efficiency (%)	66.8	74.9	71.3	76.2	76.5	$\epsilon_{\beta} = 73.1 \pm 0.1$ %

Calibration isotope : ⁸²Ga

TETRA efficiency

 $\bar{\epsilon}_{n} = 54.2 \pm 0.1 \%$

Single and neutron conditionned $\boldsymbol{\gamma}$ spectra

Energy (keV)	216.6	530.4	711.4
TETRA efficiency (%)	51.5	55.6	55.5

Energy (keV)	247.7	1046
R	1.56	1.45

