Higgs physics opportunities at the Future Circular Collider

IRN Terascale (Lyon) 15/11/2024

Giovanni Marchiori (APC-Paris) on behalf of the FCC Collaboration

FCC : a great Higgs factory (and much more) for the future generations

- Future Circular Collider: proposed 91 km circular collider @CERN after HL-LHC, with 4 interaction points (IP), in two stages:
 - $\sqrt{s}=91-365$ GeV (Z, WW, ZH, ttbar) • FCC-ee : e⁺e⁻
 - FCC-hh: pp √s=100 TeV
- A powerful and efficient Higgs factory:

FCC-ee : ZH and VBF @ $\sqrt{s}=240$, 365 GeV

16 yrs, start around 2045 (and maybe $e^+e^- \rightarrow H$ at $\sqrt{s} = 125$ GeV)

25 yrs, start around 2070

More details at: <u>https://home.cern/science/</u> accelerators/future-circular-collider

Higgs physics at the FCC

- Broad potential for Higgs measurements
 - FCC-ee:
 - **Clean environment** (e⁺e⁻), small backgrounds, high signal efficiency for most Higgs decays \Rightarrow **large S/B** •
 - FCC-hh :
 - rare decays and multi-H production
- Wide experimental program on Higgs physics summarised in the next slides
 - fundamental properties (mass, width)
 - total production cross-section
 - couplings to other particles (model-independent, absolute determination)
 - self-coupling
- Sensitivity studied with full analyses of Delphes detector simulations informed by performance studies w/ Geant4 simulations
 - Previous numbers for CDR in 2020 based on extrapolation of yields from ILC full simulations
- Most of the analyses limited by statistical uncertainty; precision depends on detector performance

• Hadronic environment and larger backgrounds, but huge yields \Rightarrow unprecedented accuracy for specific key measurements i.e.

Higgs physics opportunities at FCC - 15/11/2024

Precision & model-independent Higgs physics at the FCC-ee

• VBF at 365 GeV provides essential additional information on couplings (g_{HWW}) and width

• "Recoil" technique allows tagging Z \rightarrow ff and identifying in a clean, efficient, inclusive way ZH events \Rightarrow measure total σ_{ZH} (& g_HZZ)

$$\Gamma_H \propto \frac{\sigma \left(e^+ e^- \to \nu \bar{\nu} H, H \to bb\right) \sigma \left(e^+ e^- \to ZH\right)^2}{\sigma \left(e^+ e^- \to ZH, H \to bb\right) \sigma \left(e^+ e^- \to ZH, H \to WW\right)}$$

Higgs mass @ FCC-ee

- Target $\delta m < O(10)$ MeV to control radiative corrections on σ and BR at <% level
- - 2 leptons with opposite sign and same flavour, $m_{\parallel} \sim mZ$, $p_{\parallel} \sim few$ tens of GeV
 - Fit performed in 2 lepton-flavour categories in m_{recoil} region around m_H
- Sensitivity with baseline detector compared to alternative configurations

10.8/ab at \sqrt{s} =240 GeV : δm = 4 MeV (3.1 ⊕ 2.5) Mildly affected (<15%) by detector scenario <1% improvement on δm from combination with $\sqrt{s}=365$ GeV analysis. Other Z channels to be investigated

• Higgs mass from position of peak of m_{recoil} distribution in Z(II)H events (I=e, μ) – **S~100k after selection** (90k @ 240 GeV, 11k @ 365)

• Systematic uncertainties (beam energy spread, \sqrt{s} , lepton energy scales) ~ 2.5 MeV @ \sqrt{s} =240 GeV, dominant: \sqrt{s} , δm ~2 MeV

			1.0/ au al	4
lominal configuration	Final state	Muon 240 GeV	Electron 240 GeV	
	Nominal	3.92(4.74)	4.95(5.68)	:
Crystal ECAL to Dual Readout	Inclusive	3.92(4.74)	4.95(5.68)	
lominal 2 T , field 2 T -	Degradation electron resolution	3.92(4.74)	5.79(6.33)	
	Magnetic field 3T	3.22(4.14)	4.11(4.83)	
DEA drift chamber \rightarrow CLD Si tracker \longrightarrow	Silicon tracker	5.11(5.73)	5.89(6.42)	;
	BES 6% uncertainty	3.92(4.79)	4.95(5.92)	;
mpact of Beam Energy Spread	Disable BES	2.11(3.31)	2.93(3.88)	
Perfect (=gen-level) momentum	Ideal resolution	3.12(3.95)	3.58(4.52)	1
esolution	Freeze backgrounds	3.91(4.74)	4.95(5.67)	

Higgs physics opportunities at FCC - 15/11/2024

Total ZH cross section (and g_{HZZ}) @ FCC-ee

- Selection similar to m_H analysis (slightly looser for model independence), similar signal yields
- Analysis performed at both 240 and 365 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

10.8/ab at $\sqrt{s}=240$ GeV : $\delta\sigma = 0.599\%$ (0.592% stat-only) 3.0/ab at $\sqrt{s}=365$ GeV : $\delta\sigma = 1.48\%$ (1.42% stat-only)

• Reconstruct Z(II)+X events, train BDT to separate signal from backgrounds, and fit BDT score to determine signal cross-section

FCCAnalyses: FCC-ee Simulation (Delphes)

 $\delta g_{HZZ} \sim 0.3\%$ but requires effort (2-loop calculation) to reduce TH uncertainty to same level

Higgs physics opportunities at FCC - 15/11/2024

CP structure of the HZZ coupling @ FCC-ee

- Use angular distributions in Z(II)H recoil analysis at 240 GeV to constrain anomalous CP-odd coupling
 - Tighter selection \Rightarrow S ~20k, S/B~3 for Z(µµ)H
 - Matrix-element reweighing of signal events to obtain templates for different CP-hypotheses, fit to extract f_{CP}
 - Recently extended to Z(had)H channel

FCC-ee 10.8/ab @ 240 GeV : δf_{CP}HZZ ~ 2.5*10⁻⁵

$$\Gamma_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}}$$

- At 68% Confidence Level
- $qq \sim \pm 6.3 * 10^{-5}$
- $bb \sim \pm 1.6 * 10^{-4}$
- $\mu\mu \sim \pm 5.5 * 10^{-5}$
- $ee \sim \pm 6.7 * 10^{-5}$
- Combined~ $\pm 3.0 * 10^{-5}$

Higgs width @ FCC-ee

• Γ_H determined from total σ_{ZH} and exclusive σ_{ZH}(zz*):

 $\Gamma_{H} \propto \frac{\sigma(e^{+}e^{-} \rightarrow ZH)^{2}}{\sigma(e^{+}e^{-} \rightarrow ZH, H \rightarrow ZZ)}$

- 5 final states analysed: $Z(II) + Z(vv)Z^*(qq); Z(II) + Z(qq)Z^*(vv); Z(vv) + Z(II)Z^*(qq); Z(II) + Z(qq)Z^*(qq); Z(qq) + Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq); Z(qq)Z^*(qq)$
 - Preselections to identify $Z \rightarrow II$ and remove from jet clustering; exclusive N=2,4,6 jet clustering depending on final state; orthogonality ensured by requirements on n(leptons) / missing energy / dijet mass / recoil mass

 $\delta\Gamma/\Gamma 2.9\%$ — work ongoing on 4I + vv,qq analysis (preliminary: 7% at 10.8/ab) Impact of 2x worse neutral hadron energy resolution small (3% relative) in II + 4q analysis Expect ~1% w/ WW \rightarrow H \rightarrow bb, WW @ 240+365 GeV :

• Several final state configurations and signatures due to different Z boson decays (II/vv/qq) and the Z boson they come from

 $\Gamma_H \propto \frac{\sigma \left(e^+ e^- \to \nu \bar{\nu} H, H \to bb\right) \sigma \left(e^+ e^- \to ZH\right)^2}{\sigma \left(e^+ e^- \to ZH, H \to bb\right) \sigma \left(e^+ e^- \to ZH, H \to WW\right)}$

Hadronic Higgs decays @ FCC-ee (quark Yukawa and gluon couplings)

- Three analyses targeting Z(II), Z(vv) and $Z(qq) + H \rightarrow qq/gg$
 - Split according to Z decay based on number and flavour of leptons, missing momentum
 - All particles except leptons from Z clustered into 2 or 4 jets depending on final state
 - GNN-based jet-flavour tagging $(b/c/s/u/d/g/\tau) + kinematic features to classify events into H<math>\rightarrow$ bb/cc/...
 - Simultaneous fit to m_{recoil} (Z \rightarrow II), m_{vis} vs m_{miss} (vv), m_{recoil} vs m_{jj} (qq) in the categories to extract the BRs
- Also determine BRs of Higgs to ττ, WW and ZZ as byproduct (fully hadronic decays) but can do better with dedicated analyses

10.8/ab at √s=240 GeV : δσBR/σBR = 0.22% (bb), 1.7% (cc), 0.9% (gg), 120% (ss), 1.1% (WW) at $\sqrt{s}=365$ GeV : expect reduction of δ BR/BR by ~10% in combination with 240 GeV 3/ab

Giovanni Marchiori

δσBR/σBR δσBR/σBR $\delta\sigma BR/\sigma BR$ BR(SM) Z(II)H(jj) % Z(vv)H(jj) % Z(qq)H(jj) % 0.3 58 % 0.7 0.4 2.2 3.3 4.1 2.9 % 1.1 3.1 2.2 8.6 % 230 150 440 0.024 % 8.7 1.8 1.1 10 %

Higgs decays to quarks @ FCC-ee: 1st gen (uu, dd) and FCNC

0.8

0.6

- 0.4

- 0.2

of six additional Higgs decays

Hbb -0.87 0.00 0.01 0.00 0.00 Hcc - 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.02 Hss - 0.00 0.00 Hgg - 0.02 0.02 0.04 0.75 0.00 0.04 0.04 0.00 0.00 0.03 0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00 Htautau -0.00 0.00 0.00 0.05 0.08 0.00 0.47 0.26 0.00 0.00 0.10 0.01 0.02 0.02 Huu - 0.00 Hdd - 0.00 0.00 0.05 0.08 0.00 0.25 0.45 0.00 0.00 0.13 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.79 0.17 0.00 0.01 0.01 0.00 0.00 Hbs - 0.00 Hsd - 0.00 0.00 0.21 0.05 0.00 0.10 0.14 0.00 0.00 0.46 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.00 0.01 0.02 0.83 0.03 0.00 0.04 0.03 0.02 0.01 0.00 0.00 0.01 0.03 0.07 HZZ - 0.06 0.05 0.05 0.05 0.01 0.03 0.03 0.00 0.00 0.02 0.01 0.14 HOD Here Has Had wran Hun Had HCU and a ALL Hod

$H \rightarrow XX$ Predicted

95% CL UL on σ BR at 10⁻⁴ — 10⁻³ level with only vvjj final state at 240 GeV

Fruth

×

• Extension of previous analysis using MVA with additional output classes (uu/dd/...) and floating freely in the final fit the normalisations

10.8/ab at 240 GeV, vvjj only

Final state	Upper limit on σBR @95% CL	BR(SM)
H→dd	1.4E-03	6E-07
H→uu	1.5E-03	1.4E-07
H→bs	3.7E-04	~1e-7
H→bd	2.7E-04	~1e-9
H→sd	7.7E-04	~1e-11
H→cu	2.5E-04	~1e-20

Higgs physics opportunities at FCC - 15/11/2024

10

Rare Higgs boson decays: $\mu\mu$, $\gamma\gamma$, $Z\gamma$

- **@ FCC-ee**, $\sqrt{s}=240$ GeV, ZH, $H \rightarrow \mu\mu / \gamma\gamma$

 - Classify events into 4 categories ($Z \rightarrow ee$, $\mu\mu$, $\nu\nu$, qq) based on number and flavor of leptons, and missing momentum
 - Simultaneous fit to m_{inv} distributions in 4 categories. Largest sensitivity from Z(qq) ($\mu\mu$) or Z(vv) ($\gamma\gamma$)
- **@ FCC-hh**, $\sqrt{s}=100$ TeV GeV, $H \rightarrow \mu\mu$, $\gamma\gamma$, $Z\gamma$
 - Huge yields (60M γγ, 40M Zγ, 6M μμ) & state-of-the art detectors to kill reducible backgrounds from mis-id
 - Normalise to H \rightarrow 4I: measure $\sigma^*BR(H\rightarrow X)/\sigma^*BR(H\rightarrow 4I)$ and scale by FCC-ee BR(H \rightarrow 4I) \Rightarrow BR(H $\rightarrow X$)

: $\delta\sigma BR/\sigma BR(\mu\mu)=16\%$, $\delta\sigma BR/BR(\gamma\gamma)=3.1\%$ FCC-ee 10.8/ab @ 240 GeV FCC-hh (+ee) 30/ab @ 100 TeV : $\delta BR/BR(\mu\mu)=1.3\%$, $\delta BR/BR(\gamma\gamma)=0.8\%$, $\delta BR/BR(Z\gamma)=1.8\%$

Giovanni Marchiori

Higgs physics opportunities at FCC - 15/11/2024

• Select events with 2 high-momentum muons or photons, $m_{inv} \sim m_H$, recoil mass $\sim m_Z$ (~300 H $\rightarrow \mu\mu$, 4000 H $\rightarrow \gamma\gamma$ after selection in 10.8/ab)

Higgs boson decays to invisible final states @ FCC-ee

- Search for $ee \rightarrow ZH$, $Z \rightarrow II/qq$, $H \rightarrow invisible$ at 240 GeV
 - 5 final states/categories based on number of leptons (2e, 2μ, 0 e+μ) and, for 0-lepton, number of b- or c-tags (bb/cc/qq)
 - Further split of $Z \rightarrow qq$ category in jet-multiplicity categories (<=2, 3, >=4)
 - Z boson candidate formed by 2 leptons (Z(II)) or all reconstructed particles (Z(qq)), m_{inv}~m_Z
 - p_{miss} > 10-20 GeV to suppress dilepton bkg
 - Signal yield and BR from fit to m_{miss} distribution (floating signal/WW/ZZ, constraining ZH(other) and dilepton background) < 2 jets

Giovanni Marchiori

Higgs physics opportunities at FCC - 15/11/2024

(WW bkg \uparrow , dilepton bkg \downarrow with N_{jet} \uparrow)

Higgs boson self-coupling

- C₁ depends on $\sqrt{s} \Rightarrow$ use measurements at 240 and 365 GeV to lift degeneracy between two solutions
- Expect $\delta \kappa_{\lambda} = 28\%$ with 240 + 365 GeV runs
- At FCC-hh, constrain κ_{λ} from Higgs pair production

 Sensitivity dominated by bbγγ, but several additional final states investigated (bbtt, bbWW, 4b)

2.5%

2.0%

1.8%

2.7%

2.3%

2.0%

Higgs physics opportunities at FCC - 15/11/2024

10 GeV m_{Бb} res

5 GeV m_{bb} res

3 GeV m_{bb} res

			Ì			Ì				
						1.0				
	-	_	ł	_		ì	_		1	
	f	()	ś	2	3	3	}	-	
	2	-	i		-	1	Ş	2		
						1			1	
	Ĺ		1			ì			1	
1	-				-	-	-	-		
									1	
			ì			1			1	
									1	
			ì			j				
_			31 21			1			-	
									1	
-	Ì		ì			ŝ			1	
			i			1	_	_		
			5			1				
			į			i			1	
1		~	ł	-	*				1	
								2	2	0

Higgs couplings to 1st gen fermions: the case for a run at $\sqrt{s_{ee}}=125$ GeV

Target Higgs decay	Final state definition	Signal presel. efficiency
$H \rightarrow b\overline{b}$	2 (excl.) jets, 1 b-tagged jet, no $ au_{had}$	80%
${ m H} ightarrow gg$	2 (excl.) gluon-tagged jets, 0 isolated ℓ^{\pm}	50%
${ m H} ightarrow au_{ m had} au_{ m had}$	Exactly 2 $ au_{ m had}, 0$ isolated ℓ^{\pm}	65%
$\mathrm{H} \to c \bar{c}$	2 (excl.) jets, 1 c-tagged jet, no $ au_{ m had}$	70%
$\mathrm{H} \to \mathrm{WW}^* \to \ell \nu 2j$	1 isolated ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 2 (excl.) jets	$\sim 100\%$
$\mathrm{H} \to \mathrm{WW}^* \to 2\ell 2\nu$	2 isolated oppcharge ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 0 non-isol. ℓ^{\pm} , 0 charged hadrons	${\sim}100\%$
$\mathrm{H} ightarrow \mathrm{WW}^* ightarrow 4j$	4 (excl.) jets, $\geq 1 c$ -tag jets, 0 b-,g-tag jets;	70%
	jets with $m_{j1j2} \approx m_{\rm W}$ not both <i>c</i> -tagged, 0 $\tau_{\rm had}$, 0 isolated ℓ^{\pm}	
$\mathrm{H} \to \mathrm{ZZ}^* \to 2j2\nu$	2 (excl.) jets, $E_{\rm miss} > 30 {\rm ~GeV}, 0$ isolated $\ell^{\pm}, 0 {\tau}_{\rm had}$	$\sim 100\%$
$\mathrm{H} \to \mathrm{ZZ}^* \to 2\ell 2j$	$2 { m isolated} { m opposite-charge} \ell^{\pm}, 2 ({ m excl.}) { m jets}, 0 au_{ m had}$	${\sim}100\%$
$\mathrm{H} \to \mathrm{ZZ}^* \to 2\ell 2\nu$	2 isolated oppcharge $\ell^{\pm}, E_{\text{miss}} > 2 \text{ GeV}, 0 \text{ non-isol}, \ell^{\pm}, 0 \text{ charged hadrons}$	${\sim}100\%$
${\rm H} \rightarrow \gamma \gamma$	2 (excl.) isolated photons	$\sim 100\%$

monochromatisation AND Linst

• Dedicated run at $\sqrt{s=125}$ GeV could allow probing electron Yukawa coupling in s-channel (only way to access couplings to 1st gen)

• Requires knowledge of Higgs mass to < 5 MeV, large luminosity, excellent beam chromatisation (energy spread ~ Γ_H)

• Many Higgs decays considered, preselection followed by cut&count analysis on binary BDT classifier (signal vs background)

arXiv:2107.02686

Recent update on monochromatisation: link

8/ab/yr (4 IP) with $\delta=7$ MeV: 1600 ee \rightarrow H/yr \Rightarrow y_e<1.6 y_eSM in 2 yrs To reach sensitivity to SM need optics w/ excellent

14

Conclusion

- FCC provides exciting opportunities for wide Higgs physics program with unprecedented accuracy
- Sensitivities studied with full analyses based on parametric simulations with realistic performance of FCC detector concepts
 - L = 10.8/ab @240 GeV, 3/ab @365 GeV, 16/ab@125 GeV, 30/ab@100 TeV
- Impact of alternative detector scenarios or **more conservative** performance assumptions has so far shown limited impact on projections
- Looking to the future:
 - Analyses still being optimised, some not performed yet (esp. @ 365 GeV, separating ZH/VBF, and global combination+coupling fit)
 - Lots of work ongoing to implement full simulation + reconstruction algorithms of detector concepts for ultimate assessment of expected sensitivities
 - TH effort needed to match experimental uncertainties in interpretation of resu

=> everybody interested to join us is welcome!

	Parameter	FCC-ee	FCC
	mн	4 MeV	
	Гн	2.9 %	
	σΖΗ	0.6 % (240 GeV) 1.5 % (365 GeV)	
	$\sigma BR(H \rightarrow ZZ)$	2.8 %	
	$\sigma BR(H \rightarrow WW)$	1.1 %	
	σBR(H→gg)	0.9 %	
	$\sigma BR(H \rightarrow \gamma \gamma)$ 3.1 % (e)		0.8
	$\sigma BR(H \rightarrow Z\gamma)$	inprog	1.8
	σBR(H→bb)	OP/ 0.2 %	
	$\sigma BR(H \rightarrow \tau \tau)$	0.9 %	
	σBR(H→cc)	1.7 %	
	σBR(H→ss)	120 %	
	σBR(H→μμ)	16 %	1.3
	$\sigma BR(H \rightarrow inv.)$	0.045 %	
lto	Уe	< 1.6 y _e SM	
IIIS	$\sigma BR(H \rightarrow uu, dd, FCNC)$	< 10 ⁻⁴ — 10 ⁻³	
	Κλ	28 %	2.7

