

HH searches in bbττ final state in the ATLAS experiment, Run 2 to the HL-LHC [Phys. Rev. D 110 (2024) 032012]

IRN terascale workshop 15.11.24

Minori Fujimoto (CPPM)

Di-Higgs searches

• After symmetry breaking the Higgs potential

Existence of BSM physics can alter the shape of V(H) and modify λ significantly

→ Measure HH production to probe coupling modifier Coupling deviation expressed as ratios wrt to the SM prediction : $\kappa_{\lambda} = \frac{\lambda}{\lambda_{SM}}$

bbττ final state

- HH exploring a mixture of different Higgs decay channels to increase the sensitivity bbtt is one of the main channels : [bbbb, $bb\tau\tau$, $bb\gamma\gamma$] There are also [bbll + MET, ($\gamma\gamma$) multi-lepton]
- $[bb\tau\tau]$ di-b : relatively large BR & di- τ : Clean signal HadHad & LepHad channel

[Phys. Rev. D 110 (2024) 032012]

- Re-analyse Run2 with 140 fb⁻¹ datasets
- 3τ -decay specific triggers ($\tau_{had} \tau_{had}$, $\tau_{lep} \tau_{had}$ (SLT), $\tau_{lep} \tau_{had}$ (LTT))
- For each of the triggers new signal categorization targets different production modes

- Fitted all signal regions and CRs simultaneously for signal strength $\mu_{
 m HH}$
- $\mu_{
 m ggF}$ and $\mu_{
 m VBF}$ are also constrained

[Phys. Rev. D 110 (2024) 032012]

[PhysRevLett.133 (2024) 101801]

• Exp. limit improves by **15%** wrt previous Run 2 analysis

This improvement is equivalent to having 30% more data

Results are statistically limited

LHC / HL-LHC Plan

LHC/ HL-LHC Plan (last update October 2024)

• The HL-LHC aims at collecting at least 3000 fb⁻¹ of 14 TeV pp collisions

[ATL-PHYS-PUB-2024-016]

 Based on the Run2 Legacy analysis results, extrapolated for HL-LHC (140 → 1000 ~ 3000 fb⁻¹, 13 → 14 TeV) by scaling the final BDT discriminant

Run 2 syst. unc.	All uncertainties kept at their Run2 values
Theo. unc. 50%	Half all theory sig & bkg uncertainties
MC scaled	MC stat. uncertainty is scaled by V(L/L')
Baseline	Recommendation for expected HL-LHC performance, no MC stat.
Baseline, MC scaled	Baseline, scaled MC stat. by √(L/L')
No syst. unc.	All uncertainties removed

- Observation of HH production is in reach with 3000 fb⁻¹ with only bbττ
- In Baseline scenario expect 3.5 σ excess, stat unc. ~ syst unc.

Extrapolation of the constraining κ_{λ}

• Constraint from new SRs Low-ggF and VBF signal regions allow resolving the κ_{λ} degeneracy

In Baseline The 2nd minimum can be distinguished clearly In No syst. It can be excluded ~@ 2500 fb⁻¹

• How much we can constraint largely depends on κ_{λ} value

• Significance of HH, when varying κ_{λ} @ 3000 fb⁻¹

• Small and very large κ_{λ} can be observed but significantly reduced sensitivity around $\kappa_{\lambda} \approx 3.5 \pm 1$

B-tagging and τ -identification improvements

 The sensitivity can be improved according to the improvements of the algorithms used in the analysis

- GN2 82% WP (now available) in Baseline scenario gains O(10%) improvement 5% improvement in efficiency \rightarrow ~0.3 σ sensitivity gain
- Improvement of the hadronic signature tagging greatly benefits us

- In the same Baseline scenario, the extrapolation from the Legacy Run2 analysis half the uncertainty in κ_{λ} wrt the extrapolations from the earlier Run2 analysis
 - \rightarrow Improvement by the analysis

 Also expect improvement from the triggers in analysis (not included in the extrapolation)

- HL-LHC projection studies are carried out based on the Run2 HH \rightarrow bb $\tau\tau$ analysis, in various extrapolation scenarios
 - Observation of the SM-like HH production is in reach in HL-LHC (In Baseline scenario expect 3.5 σ , in No syst. 4.6 σ)
- The extrapolation strategy here does not taken account expected improvements in new triggers, better object reconstruction/ID, novel analysis strategy
 → This study is likely conservative and we can expect more in HL-LHC !

Backup

Di-Higgs production mode

• Production mode;

gluon-gluon Fusion (ggF) 90%, 31.02 fb @ 13TeV

Vector Boson Fusion (VBF) 4.5 %, 1.72 fb @ 13 TeV

- Updates wrt last round:
 - New event categorization
 - MVA discriminants improved
 - Improvement in modeling, with new samples

Run2 legacy analysis post-fit plots

BDT score bin

BDT score bin

BDT score bin

- Main bkgs
- ttbar, Z + HF;
 rely on MC simulations
- Fake-τ backgrounds ; data-driven techniques

BDT inputs

Variable	$ au_{ m had} au_{ m had}$	$ au_{ m lep} au_{ m had}~ m SLT$	$ au_{ m lep} au_{ m had}$ LTT
m_{jj}^{VBF}	✓	1	1
$\Delta \eta_{jj}^{ m VBF}$	\checkmark	\checkmark	\checkmark
VBF $\eta_0 \times \eta_1$	\checkmark	\checkmark	
$\Delta \phi_{jj}^{ m VBF}$	1		
$\Delta R_{jj}^{\mathrm{VBF}}$		\checkmark	1
$\Delta R_{\tau\tau}$	\checkmark		
m_{HH}	1		
f_2^a	1		
C^{a}		1	1
$m^a_{ m Eff}$		1	1
f_0^c		\checkmark	
f_0^a			1
h_3^a			1

 $\mu_{\rm ggF}~(\mu_{\rm VBF}=1)$

3.5

3.9

7.4

17

22

20

5.9

 $3.4^{+1.8}_{-0.9}$

₩

2

 κ_{λ}

0

 $\mu_{\rm VBF}~(\mu_{\rm ggF}=1)$

80

99

158

127

733

350

93

 72^{+32}_{-20}

Exp. 68% CL

Exp. 95% CL

- Obs. 68% CL

+

м

6

Obs. 95% CL

Obs. best fit

SM prediction

8

10

- Updates wrt last combination:
 - Improved results for $bb\tau\tau$, $bb\gamma\gamma$
 - New boosted VBF bbbb
 - New decay modes : multi-leptons and bbll + MET
- Best expected sensitivity to date on $\mu_{
 m HH}$

Obs. (Exp.) 95% CL limits $\mu_{\rm HH}$ < 2.9 (2.4) \times SM

Scale the final BDT discriminant for all κ signals and backgrounds

• For Luminosity

```
Apply scale factor of L'/L ( L': 1000 ~ 3000 fb<sup>-1</sup>, L: 140 fb<sup>-1</sup> )
Assumes the performance of the upgraded ATLAS detector will perform as current
```

• Apply scale factor to fix the Z+HF normalization deviation between MC and data

• For Collision Energy

Apply process dependent scale factor to take the cross-section change of

$$\sqrt{s}$$
 = 13 TeV to \sqrt{s} = 14 TeV into account

Process	Scale factor
Signals	
ggF HH	1.18
VBF HH	1.19
Backgrounds	
ggF H	1.13
VBF H	1.13
WH	1.10
ZH	1.12
ttH	1.21
Others	1.18

• Binning

Binning has not been changed from Run2 \rightarrow conservative extrapolation

• For systematics uncerterties

Apply several scenarios

In **Baseline** scenario

Source	Scale factor
Experimental uncertainties	
Luminosity	1.0
Electrons and muons efficiency	1.0
<i>b</i> -jet <i>b</i> -tagging efficiency	0.5
<i>c</i> -jet <i>b</i> -tagging efficiency	0.5
Light-jet b-tagging efficiency	1.0
$\tau_{\rm had}$ efficiency (statistical)	0.0
$\tau_{\rm had}$ efficiency (systematic)	1.0
$ au_{ m had}$ energy scale	1.0
Fake- τ_{had} estimation (statistical)	0.0
Fake- τ_{had} estimation (systematic)	0.5
Jet energy scale and resolution, $E_{\rm T}^{\rm miss}$	1.0
Theoretical uncertainties	0.5
MC statistical uncertainties	0.0

This scenario follows the latest recommendations which were use for Snowmass 2022

Assume lumi. unc. similar to Run2

Theoretical unc. halved

Signal & bkg modelling limits us the most

	Source of uncertainty	Baseline	Baseline $\Delta \mu_{HH}$		Run 2 Syst. $\Delta \mu_{HH}$	
	Total	+0.35	-0.31	+0.65	-0.51	
	Statistical stat \approx syst	+0.24	-0.23	+0.24	-0.23	
	\hookrightarrow Data stat only	+0.24	-0.23	+0.24	-0.23	
	\hookrightarrow Floating normalisations	+0.02	-0.02	+0.04	-0.02	
	Systematic	+0.25	-0.20	+0.61	-0.46	
	Experimental uncertainties	Experimental uncertainties				
-	Electrons and muons	< 0.01		< 0.01		
	τ -leptons	+0.03	-0.03	+0.06	-0.05	
	Jets	+0.06	-0.06	+0.06	-0.07	
5	<i>b</i> -tagging	+0.02	-0.02	+0.04	-0.03	
	$E_{ m T}^{ m miss}$	+0.03	-0.02	+0.04	-0.02	
	Pile-up	+0.01	-0.01	+0.01	-0.01	
	Luminosity	+0.02	-0.01	+0.02	-0.01	
	Theoretical and modelling uncertainties					
	Signal	+0.12	-0.05	+0.39	-0.07	
	Backgrounds	+0.19	-0.17	+0.37	-0.30	
	\hookrightarrow Single Higgs boson	+0.17	-0.15	+0.34	-0.27	
	$\hookrightarrow Z$ + jets	+0.06	-0.05	+0.10	-0.09	
	$\hookrightarrow W + jets$	< 0.01		< 0.01		
	$\hookrightarrow t\bar{t}$	+0.02	-0.02	+0.03	-0.02	
	\hookrightarrow Single top quark	+0.01	-0.01	+0.03	-0.04	
	\hookrightarrow Diboson	< 0.01		< 0.01		
	\hookrightarrow Jet $\rightarrow \tau_{had}$ fakes	+0.05	-0.05	+0.09	-0.08	
	MC statistical	< 0	.01	+0.38	-0.36	
-						

- Extrapolation from the Run2 126-139 fb⁻¹ Combined bbbb (126 fb⁻¹) + bb $\tau\tau$ (139 fb⁻¹, old) + bb $\gamma\gamma$ (139 fb⁻¹) results
- In Baseline scenario expect 3.4 σ excess

[ATL-PHYS-PUB-2021-044]

- There are 2 κ_{λ} values for a given cross section
- In the extrapolation from the previous Run2 bb $\tau\tau$ analysis there were no low-/high-ggF regions and double minimum of κ_{λ} was clear

 Adding low-/high-ggF allow to see the feature of the shape of the mHH and help excluding the second minimum

- For constraining κ_{2V} = 1 (SM), Resolved region leads (green) in bbbb channel For other κ_{2V} Boosted region leads (blue)
- Now analysis including the Boosted regions are ongoing/evolving in bbbb/bbau au

$\mu_{\rm HH}$ significance varying κ values

