



# Search for heavy resonances in the 4-lepton final state at CMS

### **IRN Terascale**

Nov. 13th-15th, 2024

#### Geliang Liu on behalf of CMS Collaboration



CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-20 08:43:46.921344 GMT Run / Event / LS: 324980 / 138958662 / 109

## Introduction

## **Motivation**



### Why new resonances?

#### Despite the great success of the Standard Model (SM), many questions are not answered by it

- Why 3 generations?
- Hierarchy problem?
- Dark matter and dark energy?
- Matter-anti-matter asymmetry?
- • • •

#### New resonances predicted by many theories beyond the SM (BSM)

- Additional Higgs bosons:
  - extended SM / Higgs sector
  - o supersymmetry
- Radion:
  - warped extra dimension

## **Motivation**



### Why new resonances?

### Why $ZZ \rightarrow 4$ leptons?

#### Despite the great success of the Standard Model (SM), many questions are not answered by it

- Why 3 generations?
- Hierarchy problem?
- Dark matter and dark energy?
- Matter-anti-matter asymmetry?
- • • •

#### New resonances predicted by many theories beyond the SM (BSM)

- Additional Higgs bosons:
  - o extended SM / Higgs sector
  - o supersymmetry
- Radion:
  - warped extra dimension

#### **Golden channel:**

- Great S/B ratio for the SM Higgs
  boson
- High efficiency and good resolution of e, μ
- Well modeling of the background processes



## **Relevant public results**



#### From CMS experiments:

- o JHEP 2018, 127 (2018)
- 4I+2I2q+2I2v with the 2016 dataset
- Mass: 130 3000 GeV
- Width: 0 to 30% of mass

#### Model-independent searches

#### From ATLAS experiments:

- o <u>EPJC 81, 332 (2021)</u>
- 4I+2I2v with the Run 2 datasets
- Mass: 200 2000 GeV
- o Width: 0 to 15% of mass
- Model-independent searches + 2HDM + Kaluza-Klein graviton



## Analysis strategy and status

- Search for scalar resonances decaying to ZZ to 4 leptons (electron or muon)
- > Production:
  - gluon fusion (ggF)
  - vector boson fusion (VBF)
- Resonance mass:
  - 130 3000 GeV
- Resonance width:
  - $\circ$  0 to 30% of mass



Model-independent searches: no specific physics model

#### Full Run 2 datasets

 $\circ$  Integrated luminosity of 138 fb<sup>-1</sup>

#### Published as a CMS Physics Analysis Summary

- o <u>CMS-PAS-HIG-24-002</u>
- Will be submitted to a journal soon

CMS.



CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-20 08:43:46.921344 GMT Run / Event / LS: 324980 / 138958662 / 109

## Analysis Workflow

## **Event selection and categorization**





## **Discriminating variables**





- All the processes are from Monte Carlo (MC) simulation, except Z+X.
- These distributions don't represent the statistical model we build.

Parametric approach to model all processes, because:

- Model independent: signal models parameterized on  $M_X$ ,  $\Gamma_X$ .
- the statistics at high mass of backgrounds are low.





Parametric approach to model all processes, because:

- Model independent: signal models parameterized on  $M_X$ ,  $\Gamma_X$ .
- the statistics at high mass of backgrounds are low.

 $P(M_{4l}^{reco}, D_{bkg}^{kin}) = \{ \left[ P(M_{4l}^{gen} | m_X, \Gamma_X) \times eff(M_{4l}^{gen}) \right] \otimes R(M_{4l}^{reco} | M_{4l}^{gen}) \} \cdot P(D_{bkg}^{kin} | M_{4l}^{reco})$ 





Parametric approach to model all processes, because:

- Model independent: signal models parameterized on  $M_X$ ,  $\Gamma_X$ .
- the statistics at high mass of backgrounds are low.

 $P(M_{4l}^{reco}, D_{bkg}^{kin}) = \{ \left[ P(M_{4l}^{gen} | m_X, \Gamma_X) \times eff(M_{4l}^{gen}) \right] \otimes R(M_{4l}^{reco} | M_{4l}^{gen}) \} \cdot P(D_{bkg}^{kin} | M_{4l}^{reco})$ 





 $P(M_{4l}^{reco}, D_{bkg}^{kin}) = \{ \left[ P(M_{4l}^{gen} | m_X, \Gamma_X) \times eff(M_{4l}^{gen}) \right] \otimes R(M_{4l}^{reco} | M_{4l}^{gen}) \} \cdot P(D_{bkg}^{kin} | M_{4l}^{reco})$ 



Validated by comparing with shapes from MC simulation

## **Backgrounds and interferences**



000



 $M_{41}^{reco}$  is parameterized with empirical functions

## **Backgrounds and interferences**





#### **Background modeling**

SM Higgs boson: the same as signals, with  $M_H$ = 125 GeV and  $\Gamma_H$  = 4.1 MeV qqZZ (dominating): by MC (NLO in QCD, with NNLO QCD k-factor and NLO EW k-factor) ggZZ: by MC (LO, with NNLO k-factor) Triboson and tops+bosons, VBFZZ: by MC Z+X: estimated from control region data using a data-driven method

 $M_{4l}^{reco}$  is parameterized with empirical functions

#### Interference modeling

- Three components for each production: signal v.s. SM Higgs boson v.s. nonresonant bkg
- Amplitudes from signal and background models
- Phases from generators and kinematics



CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-20 08:43:46.921344 GMT Run / Event / LS: 324980 / 138958662 / 109

## Results



- Parameter of interest: signal strength  $r = \frac{\sigma(pp \rightarrow X \rightarrow ZZ)}{\sigma_{model}(pp \rightarrow X \rightarrow ZZ)}$ 
  - $r_{ggF} = r \cdot (1 f_{VBF})$
  - $r_{VBF} = r \cdot f_{VBF}$
  - $P_{tot} = r_{ggF/VBF} \cdot P_{sig} + \sqrt{r_{ggF/VBF}} \cdot P_{int} + P_{bkg}$
- Statistical method:
  - Unbinned likelihood fits on  $(m_{4l}^{reco}, D_{bkg}^{kin})$
  - Since no significant excess is observed, we use the **CLs method** to compute **upper limits at 95% confidence level** on signal strength r with asymptotic formulae, as a function of  $M_X$  and  $\Gamma_X$ , for different production mechanisms.

## **Results: narrow width assumption**







## **Results: narrow width assumption**





Geliang Liu | LLR, Ecole polytechnique

## **Results: various width assumptions**



#### Γ<sub>X</sub> = 1, 10, 100 GeV



- No additional excess is observed.
- When the signal is widely spread, the observed results are below the expected ones, because the expected background yield is higher than data.

15 Nov 2024

## **Results: various width assumptions**



#### > Scan both $M_X$ and $\Gamma_X/M_X$





CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-20 08:43:46.921344 GMT Run / Event / LS: 324980 / 138958662 / 109

## Conclusion

## Conclusion



- Searches for heavy scalar resonances decaying into 4 leptons are performed with the Run 2 dataset collected from the CMS detector.
- The model-independent approach is used.
- Upper limits at 95% confidence level on  $\sigma(pp \to X \to ZZ)$  are computed, as a function of  $M_X$ ,  $\Gamma_X$ , for different production mechanisms.
- No excess is observed, except at 137.8 GeV with narrow width assumption, corresponding to a global significance of 1.85  $\sigma$ .

#### Future plans

- Will be submitted to a journal soon.
- Combination with the **212q and 212v** final states with the full Run 2 dataset:
  - 2l2q ongoing (also with contributions from LLR).
  - o 2l2v at a very young stage.
- Perform the searches with **Run 3 data**, trying to confirm or exclude the existing excesses.

## Conclusion



- Searches for heavy scalar resonances decaying into 4 leptons are performed with the Run 2 dataset collected from the CMS detector.
- The model-independent approach is used.
- Upper limits at 95% confidence level on  $\sigma(pp \to X \to ZZ)$  are computed, as a function of  $M_X$ ,  $\Gamma_X$ , for different production mechanisms.
- No excess is observed, except at 137.8 GeV with narrow width assumption, corresponding to a global significance of 1.85  $\sigma$ .

#### Future plans

- Will be submitted to a journal soon.
- Combination with the **212q and 212v** final state with the full Run 2 dataset:
  - 212q ongoing (also with contributions from LLR).
  - o 2l2v at a very young stage.
- Perform the searches with **Run 3 data**, trying to confirm or exclude the existing excesses

## **Thanks for your attention!**



CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-20 08:43:46.921344 GMT Run / Event / LS: 324980 / 138958662 / 109

## Backup

## **Object selection**

| CMS |
|-----|
|     |
|     |

| Particle type | Selection requirements                                             |  |  |  |  |  |
|---------------|--------------------------------------------------------------------|--|--|--|--|--|
|               | $p_{\mathrm{T}}^{e} > 7 \mathrm{GeV}$                              |  |  |  |  |  |
|               | $ \eta_e  < 2.5$                                                   |  |  |  |  |  |
|               | $d_{xy} < 0.5 	ext{ cm}$                                           |  |  |  |  |  |
| Electrons     | $d_z < 1.0 \text{ cm}$                                             |  |  |  |  |  |
|               | $ SIP_{3D}  < 4$                                                   |  |  |  |  |  |
|               | ID from BDT score                                                  |  |  |  |  |  |
|               | Isolation from BDT score                                           |  |  |  |  |  |
|               | Global or Tracker Muon                                             |  |  |  |  |  |
|               | Discard Standalone Muon tracks                                     |  |  |  |  |  |
|               | $p_{\mathrm{T}}^{r} > 5 \mathrm{GeV}$                              |  |  |  |  |  |
|               | $ \eta_{\mu}  < 2.4$                                               |  |  |  |  |  |
| Muons         | $d_{xy} < 0.5 \text{ cm}$                                          |  |  |  |  |  |
|               | $d_z < 1.0 \text{ cm}$                                             |  |  |  |  |  |
|               | $ \text{SIP}_{3\text{D}}  < 4$                                     |  |  |  |  |  |
|               | PF muon ID if $p_{\rm T}^r < 200 {\rm GeV}$                        |  |  |  |  |  |
|               | Tracker High- $p_{\rm T}$ muon ID if $p_{\rm T}^r > 200 {\rm GeV}$ |  |  |  |  |  |
|               | $\mathcal{I}^{\mu} < 0.35$                                         |  |  |  |  |  |
|               | $p_{\rm T}^{\prime} > 2  {\rm GeV}$                                |  |  |  |  |  |
|               | $ \eta_{\gamma}  < 2.4$                                            |  |  |  |  |  |
| Photons       | $\mathcal{L}^{\gamma} < 1.8$                                       |  |  |  |  |  |
|               | $\Delta K(l,\gamma) < 0.5$                                         |  |  |  |  |  |
| /             | $\frac{\Delta K(t,\gamma)}{(p_{\rm T})^2} < 0.012  {\rm GeV}^2$    |  |  |  |  |  |
|               | $p_{\rm T}^{\rm rr} > 30 {\rm GeV}$                                |  |  |  |  |  |
| Lata          | $ \eta_{jet}  < 4.7$                                               |  |  |  |  |  |
| Jets          | $\Delta K(l/\gamma, jet) > 0.4$                                    |  |  |  |  |  |
|               | Cut-based ID                                                       |  |  |  |  |  |
|               | Jet plieup ID                                                      |  |  |  |  |  |

15 Nov 2024



- Any two leptons have  $\Delta R(l_1, l_2) > 0.02$ .
- The Z candidate with mass closer to Z mass is defined as  $Z_1$ , the other  $Z_2$ .  $Z_1$  has  $M_{Z_1} > 40$  GeV.
- The highest lepton pT is > 20 GeV, second highest > 10 GeV.
- Any two leptons with opposite sign have  $M_{l^+l^-} > 4$  GeV.
- In the 4µ and 4e final state, swap two positive leptons to form another two Z candidates, and the one with mass closer to Z mass is is defined as  $Z_a$ , the other  $Z_b$ . The ZZ candidate cannot satisfy both  $|M_{Z_a} M_Z| < |M_{Z_1} M_Z|$  and  $M_{Z_b} < 12$  GeV.
- $M_{ZZ} > 70 \text{ GeV}.$

## Signal model validation



## $P(M_{4l}^{reco}, D_{bkg}^{kin}) = \left\{ \left[ P(M_{4l}^{gen} | m_X, \Gamma_X) \times eff(M_{4l}^{gen}) \right] \otimes R(M_{4l}^{reco} | M_{4l}^{gen}) \right\} \cdot P(D_{bkg}^{kin} | M_{4l}^{reco})$

#### Validation: check if the signal model describes the MC simulation

- MC produced with CPS, reweighted to the Breit-Wigner lineshape based on MELA.
- The mass, width and cross section are set to be the same as the MC.



## Interference model validation



#### Validation: SM Higgs boson v.s. non-resonant backgrounds (ggZZ or VBFZZ)

 Compare to MC simulation: off-shell production samples with weights from MELA to model the H125-background interference



#### ggH125 v.s. ggZZ

VBFH125 v.s. VBFZZ

 Uncertainties to take into account the potential difference (total yield and category migration) between MC and the interference model

## Interference model validation



#### Validation: signals v.s. non-resonant backgrounds (ggZZ or VBFZZ)

 Compare to MC simulation: signal samples with weights from MELA to model the interferences

#### ggH200 v.s. ggZZ



#### ggH400 v.s. ggZZ



#### ggH1000 v.s. ggZZ



#### Validation: signals v.s. SM Higgs boson



#### ggH400 v.s. ggH125



#### ggH1000 v.s. ggH125



15 Nov 2024

Geliang Liu | LLR, Ecole polytechnique

VBF in backup

<sup>30</sup> 

### Systematic uncertainties



| Source                     | 2016                   | 2017          | 2018                        | Effects                                                       | Affected processes                                                |  |  |  |  |
|----------------------------|------------------------|---------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Experimental uncertainties |                        |               |                             |                                                               |                                                                   |  |  |  |  |
| Luminosity                 | 1.2%                   | 2.3%          | 2.5%                        | norm                                                          | all except Z +X                                                   |  |  |  |  |
| e efficiency               | 3-10%                  | 3-9%          | 3-9%                        | norm                                                          | all except Z +X                                                   |  |  |  |  |
| $\mu$ efficiency           | 1-2%                   | 1-2%          | 1-2%                        | norm                                                          | all except Z +X                                                   |  |  |  |  |
| $e(\mu)$ energy scale      | 0.15(0.03)%            |               |                             | shape                                                         | $\mathcal{R}(M_{4\ell}^{\mathrm{reco}} M_{4\ell}^{\mathrm{gen}})$ |  |  |  |  |
| $e(\mu)$ energy resolution | 10(3)%                 |               | shape                       | $\mathcal{R}(M_{4\ell}^{\text{reco}} M_{4\ell}^{\text{gen}})$ |                                                                   |  |  |  |  |
| jet energy scale           | $\approx 1\%$          |               | norm                        | all except Z +X                                               |                                                                   |  |  |  |  |
| jet energy resolution      |                        | $\approx 1\%$ |                             | norm                                                          | all except Z +X                                                   |  |  |  |  |
| jet b-tagging efficiency   | agging efficiency 0.1% |               |                             | norm                                                          | all except Z +X                                                   |  |  |  |  |
| pileup reweighting         | 0-1%                   |               |                             | norm                                                          | All except $Z + X$                                                |  |  |  |  |
| L1 prefiring               | 0-1%                   |               |                             | norm                                                          | All except $Z + X$                                                |  |  |  |  |
| ggF interference           | 9-11%                  |               |                             | norm                                                          | interferences                                                     |  |  |  |  |
| VBF interference           | 13-18%                 |               |                             | norm                                                          | interferences                                                     |  |  |  |  |
| $Z + X (4\mu)$             | 30%                    | 30%           | 30%                         | norm                                                          | Z +X                                                              |  |  |  |  |
| Z + X (4e)                 | 31%                    | 31%           | 30%                         | norm                                                          | Z +X                                                              |  |  |  |  |
| $Z + X (2e2\mu)$           | 31%                    | 30%           | 30%                         | norm                                                          | Z +X                                                              |  |  |  |  |
| Theoretical uncertainties  |                        |               |                             |                                                               |                                                                   |  |  |  |  |
| $BR(X \rightarrow ZZ)$     | 2%                     |               |                             | norm                                                          | signals                                                           |  |  |  |  |
| QCD scale                  | 1-15%                  |               |                             | shape: qqZZ<br>norm: others                                   | all except Z +X                                                   |  |  |  |  |
| PDF 0.1-7%                 |                        |               | shape: qqZZ<br>norm: others | all except Z +X                                               |                                                                   |  |  |  |  |
| $\alpha_S$                 | 0.1-7%                 |               |                             | norm                                                          | all except Z +X                                                   |  |  |  |  |
| underlying events          | 0.4-10%                |               |                             | norm                                                          | all except Z +X                                                   |  |  |  |  |
| qqZZ K factor              | 0.1-30%                |               |                             | shape                                                         | qqZZ                                                              |  |  |  |  |
| ggZZ K factor              | 10%                    |               |                             | norm                                                          | ggZZ                                                              |  |  |  |  |

### **Background-only fits**



CMS