

Testing the Standard Model with WZ polarization

Joany Manjarrés Ramos Laboratoire des deux Infinis – Toulouse

r Nicolas VIGNERON — Travail personnel, CC BY-SA 3.0 —

- They important probes of SM gauge and Higgs sectors
- can provide discrimination power between SM and BSM physics

But..... they are non trivial to extract

The state-of-the-art

Measurements at LEP:

- Only diboson process accessible for such measurements $e^+e^- \rightarrow W^+W^-$
- Single boson polarization measurements: L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]
- Joint-polarization measurements: OPAL [arXiv:0009021], DELPHI [arXiv:0908.1023]
- Never reached observation level sensitivity for longitudinal-longitudinal joint-polarization

Measurements at the LHC:

- Single and Joint- boson polarization measurements
- $pp \rightarrow W^{\pm}Z$
- CMS @13TeV 137 fb⁻¹ (inclusive phase space) <u>CMS-SMP-20-014</u>
- ATLAS @13TeV 139 fb⁻¹ (inclusive phase space) Phys. Lett. B 843 (2023) 137895
- ATLAS @13TeV 139 fb⁻¹ (high p_T (Z) phase space) Phys. Rev. Lett. 133 (2024) 101802

$\blacksquare pp \rightarrow ZZ$

• ATLAS @13TeV 140 fb-1 (inclusive phase space) JHEP 12 (2023) 107

■ $pp \rightarrow W^{\pm}W^{\pm}jj$

• CMS @13TeV 137 fb⁻¹ (VBS phase space) Phys. Lett. B 812 (2020) 136018

How to measure polarization?

- Polarization can be quantified using the helicity that describes the alignment of a particle's spin with its momentum.
 - Transversal polarization (T): the spin and momenta are (anti)-aligned (h=1, -1)
 - Longitudinal polarization (L or 0): spin perpendicular with the momenta (h=0)

How to measure polarization?

- Polarization can be quantified using the helicity that describes the alignment of a particle's spin with its momentum.
 - Transversal polarization (T): the spin and momenta are (anti)-aligned (h=1, -1)
 - Longitudinal polarization (L or 0): spin perpendicular with the momenta (h=0)

A caveat

- Polarization measurements are frame dependent
- For all measurements you need to define a frame (there is not an universally preferred frame)

How to measure polarization?

- Polarization can be quantified using the helicity that describes the alignment of a particle's spin with its momentum.
 - Transversal polarization (T): the spin and momenta are (anti)-aligned (h=1, -1)
 - Longitudinal polarization (L or 0): spin perpendicular with the momenta (h=0)

A caveat

- Polarization measurements are frame dependent
- For all measurements you need to define a frame (there is not an universally preferred frame)

How to measure polarization?

- Parity violation in weak interactions → polarization has effects on the decay products
- Angular variables between the bosons and the decays are typically used to measure the weak bosons polarizations
- Perform fits to data distributions using *polarized templates*

Polarized templates how?

Monte Carlo generators

- Several generators in the market:
 - PHANTOM: 2 → 6 processes @ LO+PS [A. Ballestrero et al. 2008, 2017]
 - Madgraph: arbitrary processes @ LO, PS matching, multi-jet merging [D. Buarque Franzosi et al. 2020]
 - POWHEG-BOX-RES: diboson processes @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]
- Sherpa: arbitrary processes @nLO QCD, PS matching, multi-jet merging [МН, М. Schönherr, F. Siegert 2023]
- Madgraph has been so far <u>the one</u> used by the collaborations

Polarized templates how?

Monte Carlo generators

- Several generators in the market:
- PHANTOM: 2 → 6 processes @ LO+PS [A. Ballestrero et al. 2008, 2017]
- Madgraph: arbitrary processes @ LO, PS matching, multi-jet merging [D. Buarque Franzosi et al. 2020]
- POWHEG-BOX-RES: diboson processes @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]
- Sherpa: arbitrary processes @nLO QCD, PS matching, multi-jet merging [МН, М. Schönherr, F. Siegert 2023]
- Madgraph has been so far <u>the one</u> used by the collaborations

G. Pelliccioli et al

Radiation Amplitude Zero effect

• At LO strong gauge cancellations making $\mathcal{M}(\pm, \mp) = 0$ that translates in drop in the TT crosssection (true for WZ and W γ [D0 result])

Radiation Amplitude Zero effect

- At LO strong gauge cancellations making $\mathcal{M}(\pm, \mp) = 0$ that translates in drop in the TT crosssection (true for WZ and W γ [D0 result])
- At higher orders the dip of the RAZ disappears

Radiation Amplitude Measurement in WZ

■ Used a $p_T(WZ)$ cut to reduce the jet activity \rightarrow tighter $p_T(WZ)$ cut \rightarrow more LO like Phase Space!

Polarization modelling: Madgraph LO 0+1j merged samples. Uncertainties by reweighing to NLO QCD+EW based on fix order predictions (G. Pelliccioli, Duc Ninh Le)

Radiation Amplitude Zero effect in WZ

Define a Depth variable to qualify the deepness TT dip

Radiation Amplitude Zero effect in WZ

Define a Depth variable to qualify the deepness TT dip

$$D = 1 - 2 \times \frac{N_{\rm unf}^{\rm central}}{N_{\rm unf}^{\rm sides}}$$

- D = 0 no dip
- D < 0 an excess</p>
- D > 0 means there is a dip
- Calculated the depth using unfolded TT only distributions (00+0T+T0-subtracted) for different p_T(WZ) cuts

Radiation Amplitude Zero effect in WZ

Define a Depth variable to qualify the deepness TT dip

 $D = 1 - 2 \times \frac{N_{\rm unf}^{\rm central}}{N_{\rm unf}^{\rm sides}}$

- D = 0 no dip
- D < 0 an excess
- D > 0 means there is a dip
- Calculated the depth using unfolded TT only distributions (00+0T+T0-subtracted) for different p_T(WZ) cuts

Depth variable well above 0 ! We see the RAZ deep !

supporting actor

Double longitudinal WZ at high pT

	00-enhanced region 1	00-enriched region 2
Pass inclusive WZ event selection	\checkmark	\checkmark
Transverse momentum of the Z boson (p_T^Z)	[100, 200] GeV	> 200 GeV
Transverse momentum of the WZ system (p_T^{WZ})		< 70 GeV

Double longitudinal WZ at high p_T

	00-enhanced region 1	00-enriched region 2
Pass inclusive WZ event selection	\checkmark	\checkmark
Transverse momentum of the Z boson (p_T^Z)	[100, 200] GeV	> 200 GeV
Transverse momentum of the WZ system (p_T^{WZ})		< 70 GeV

Double longitudinal WZ at high p_T

	00-enhanced region 1	00-enriched region 2
Pass inclusive WZ event selection	\checkmark	\checkmark
Transverse momentum of the Z boson (p_T^Z)	[100, 200] GeV	> 200 GeV
Transverse momentum of the WZ system (p_T^{WZ})		< 70 GeV

The signal region yields :

Process	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
W_0Z_0	222 ± 5	47.6 ± 1.5
$W_0 Z_T + W_T Z_0$	323 ± 12	23.7 ± 0.8
$W_T Z_T$	856 ± 31	124 ± 4
Prompt background	169 ± 18	24.1 ± 2.7
Non-prompt background	68 ± 29	2.8 ± 1.1
Total Expected	1640 ± 60	222 ± 8
Data	1740	236

Double longitudinal WZ at high p_T

	00-enhanced region 1	00-enriched region 2
Pass inclusive WZ event selection	\checkmark	\checkmark
Transverse momentum of the Z boson (p_T^Z)	[100, 200] GeV	> 200 GeV
Transverse momentum of the WZ system (p_T^{WZ})		< 70 GeV

The signal region expected fractions :

	Prediction		
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	0.152 ± 0.006	0.234 ± 0.007	
f_{0T}	0.120 ± 0.002	0.062 ± 0.002	
f_{T0}	0.109 ± 0.001	0.058 ± 0.001	
f_{TT}	0.619 ± 0.007	0.646 ± 0.008	

Polarization WZ at high p_T

- Double Longitudinal component increased up to 23%
- Relative s-channel contribution expected to be higher at high $p_T(Z)$
- To separate the polarization components dedicated BDT were trained for each $p_T(Z)$ bin

WZ join polarization - 00-enhaced region

Statistical analysis

- Fit performed using 2 configurations (more free parameters less model dependent):
 - 3 parameters: 00, T0+0T and TT
 - 2 parameters: 00 vs T0+0T+TT
- Dominated by statistical uncertainties, but NLO EW and QCD uncertainties have the largest impact!

	Prediction		
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	0.152 ± 0.006	0.234 ± 0.007	
f_{0T}	0.120 ± 0.002	0.062 ± 0.002	
f_{T0}	0.109 ± 0.001	0.058 ± 0.001	
f_{TT}	0.619 ± 0.007	0.646 ± 0.008	

We are able to reach observation/ evidence of double longitudinal

bosons at high p_T(Z) \parallel \rightarrow approaching the regime where longitudinal bosons already behave as Goldstone bosons

		3 free parameter	s	
	Measurement			
	100 < p	$T_T^Z \leq 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	$0.19 \pm _{0.03}^{0.03}$ ($(\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	$0.13 \pm_{0.08}^{0.09} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	
f_{0T+T0}	$0.18 \pm _{0.08}^{0.07}$ ($(\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	
ftt	$0.63 \pm 0.05 ($	$(stat) \pm_{0.04}^{0.04} (syst)$	$0.64 \pm 0.12_{0.12}$ (stat) $\pm 0.06_{0.06}$ (syst)	
f_{00} obs (exp) sig.	5.2	(4.3) <i>σ</i>	1.6 (2.5) σ	
			_	
		2 free parameter	s	
		2 free parameter Measu	s rement	
	100 < <i>p</i>	2 free parameter Measur $D_T^Z \leq 200 \text{ GeV}$	s rement $p_T^Z > 200 \text{ GeV}$	
	100 < p $0.17 \pm_{0.02}^{0.02}$	2 free parameter Measure $P_T^Z \le 200 \text{ GeV}$ (stat) $\pm_{0.02}^{0.01}$ (syst)	s rement $p_T^Z > 200 \text{ GeV}$ $0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$	
f_{00} f_{XX}	100 < p 0.17 ± ^{0.02} _{0.02} 0.83 ± ^{0.02} _{0.02}	2 free parameter Measur $p_T^Z \le 200 \text{ GeV}$ (stat) $\pm_{0.02}^{0.01}$ (syst) (stat) $\pm_{0.01}^{0.02}$ (syst)	s rement $p_T^Z > 200 \text{ GeV}$ $0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$ $0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$	
f_{00} f_{XX} f_{00} obs (exp) sig.	100 < p $0.17 \pm_{0.02}^{0.02}$ $0.83 \pm_{0.02}^{0.02}$ 7.7	2 free parameter Measure $P_T^Z \leq 200 \text{ GeV}$ (stat) $\pm_{0.02}^{0.01}$ (syst) (stat) $\pm_{0.01}^{0.02}$ (syst) (stat) $\pm_{0.01}^{0.02}$ (syst) 7 (6.9) σ	s rement $p_T^Z > 200 \text{ GeV}$ $0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$ $0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$ $3.2 (4.2) \sigma$	

Uncertainties

Source	Impact on f_{00} [%]	
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
Luminosity	0.1	0.2
Electron calibration	1.0	0.9
Muon calibration	1.1	1.3
Jet energy scale and resolution	5.9	9.0
$E_{\rm T}^{\rm miss}$ scale and resolution	1.0	0.6
Flavor-tagging inefficiency	0.1	0.2
Pileup modelling	1.6	1.1
Non-prompt background estimation	5.8	0.8
Modelling		
Background, other	1.4	1.6
Model statistical	2.5	5.6
NLO QCD effects	6.8	8.2
NLO EW effects	1.1	3.3
Effect of additive vs multiplicative QCD+EW combination	1.3	3.8
Interference impact	1.4	0.7
PDF, Scales, and shower settings	3.5	9.2
Experimental and modelling	12.1	17.7
Data statistical	18.0	64.5
Total	21.7	66.9

Uncertainties

Source	Impact on f_{00} [%]	
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
Luminosity	0.1	0.2
Electron calibration	1.0	0.9
Muon calibration	1.1	1.3
Jet energy scale and resolution	5.9	9.0
$E_{\rm T}^{\rm miss}$ scale and resolution	1.0	0.6
Flavor-tagging inefficiency	0.1	0.2
Pileup modelling	1.6	1.1
Non-prompt background estimation	5.8	0.8
Modelling		
Background, other	1.4	1.6
Model statistical	2.5	5.6
NLO QCD effects	6.8	8.2
NLO EW effects	1.1	3.3
Effect of additive vs multiplicative OCD+EW combination	1.3	3.8
Interference impact	1.4	0.7
PDF, Scales, and shower settings	3.5	9.2
Experimental and modelling	12.1	17.7
Data statistical	18.0	64.5
Total	21.7	66.9

Summary

supporting actor

Summary

- Polarization measurements are a new open door to probe the ingredients of the EWSB
- With Run-2 data we are already able to probe the polarization fractions in VV production
 - Results include the evidence or observation of double longitudinally polarized gauge bosons in WZ production at high p_T
 - Big limiting factor for our measurements is the modelling of the polarization templates! → theory community is actively working on the topic!
 - VBS production still severely limited by data statistics, but already showing promise in same-sign WW production. A lot can be expected as we gather more data!
- An active theory and experimental community exist, first <u>Polarization Workshop</u> was hosted in Toulouse, next one will be announced soon :)

