DarkSide-20k sensitivity to light dark matter particles

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

On Behalf of the DarkSide-20k Collaboration

DARKSIDE

- 1. Motivation
- 2. DarkSide-20k detector
- 3. Background model for light DM searches
- 4. Prospect sensitivity (WIMP, leptophilic DM)
- 5. Conclusion

IRN Terascale meeting, November 13-15 2024

Motivation

DarkSide-50 (2015-18): double phase TPC, 50 kg low-radioactivity underground argon

Motivation

DarkSide-50 (2015-18): double phase TPC, 50 kg low-radioactivity underground argon

✓ Obtained world best limits on WIMP-nucleon σ_{sl} for light WIMPs (1.2-3.6 GeV)

PRD 107 (2023) 063001

Extended down to 40 MeV using Migdal effect + limits on leptophilic light DM candidates

PRL 130 (2023) 101001

PRL 130 (2023) 101002

→ Asset of argon TPC technology to search for light (<10 GeV) DM

DarkSide-20k (DS-20k)

- Next generation LAr double phase TPC (unique world-wide collaboration)
 - ✓ Construction started at LNGS → Should start data taking in 2027

DS-20k in 2024

Proto-Dune cryostat completed in LNGS Hall C

TPC Photo Detector Modules (PDMs) production starting

Plant for 100 t Underground Argon (Urania) extraction

is ~ready

+ distillation column

Mine exploitation by Doe Canyon Facility (Cortez, CO, USA)

DS-20k: low mass DM analysis

Background model

Internal UAr background

- ³⁹Ar and ⁸⁵Kr → β-emitters uniformly distributed in LAr active volume
- Both unique first-forbidden β-decays → spectra from latest calculations of atomic exchange and screening effects Phys.Rev.A 90 (2014) 012501, Phys.Rev.C 102 (2020) 065501

Internal UAr background

Spurious e⁻ (SE) originated from UAr impurities, modeled with DS-50 data extrapolated to DS-20k
50 x higher background rate wrt DS-50, 23% single electron response resolution

Spurious e⁻ origin

- Recent progresses in understanding the origin of spurious e⁻ by X-ART collaboration arXiv:2410.22863
 - ✓ S1 study as a function of Xenon doping in Argon

EUV Photons identified for the first time \rightarrow can ionize impurities and cause single SE

✓ Understanding of multiple SE ongoing \rightarrow could benefit DS-20k

External background

- Sources of γ and X-rays from inner detector material: photo-electronics (PDM), TPC structure and stainless-steel vessel
 - Spectra from GEANT-4 based simulations, normalized from material screening campaigns

Radio-	Activity (Bq)		
contaminant	TPC	PDMs	SS vessel
238 U up	16.1	38.8	21
238 U mid	11.5	18.4	8.8
238 U low	16.4	449	62
232 Th	4.2	17.8	33
^{235}U	0.7	1.8	1.0
^{137}Cs	2.5	2.9	5.0
60 Co	2.0	5.1	13
40 K	102	269	49

→ 2.5x reduced bkg contamination per surface area \perp to drift wrt DS-50

Neutrino

Solar neutrinos can scatter off the argon atom in two ways

WIMP signal

Profile Likelihood and systematics

			K
		Source uncertainty	Affected
			components
	e	5% on the exposure	All
	mplitud	15% on ³⁹ Ar activity	³⁹ Ar
		15% on ⁸⁵ Kr activity	⁸⁵ Kr
		20% on SE normalization	SE
	A	10% on activity from PDMs	PDMs
		10% on activity from the vessel	Vessel
		10% on activity from the TPC	TPC
		10% on neutrinos normalization	Neutrinos
		atomic exchange and screening	³⁹ Ar
	ape	atomic exchange and screening	⁸⁵ Kr
		1% on the ³⁹ Ar-decay Q-value	³⁹ Ar
	Shi	0.4% on the ⁸⁵ Kr-decay <i>Q</i> -value	⁸⁵ Kr
	•1	SE modelling	SE
		ER ionization response	All backgrounds
		602	but $CE\nu NS$, SE
		NR ionization response	WIMP, $CE\nu NS$
- 1			

- 90% C.L. limits from binned profile-likelihood fit on N_e distribution, including amplitude uncertainties (activities, exposure) and shape systematics (βdecay shapes, LAr response calibration, SE)
- Strong constraints on nuisance parameters associated to dominant backgrounds and ER ionization yield

Sensitivity to low mass WIMPs (1/3)

 \rightarrow > 1 order of magnitude improvement wrt current experiments in 1 year

P. Pralavorio (CPPM) DarkSide-20k sensitivity to light dark matter particles

Sensitivity to low mass WIMPs (2/3)

 \rightarrow With 10 years exposure, **neutrino fog** in LAr reached m_y around 5 GeV

Sensitivity to low mass WIMPs (3/3)

 \rightarrow > 1 order of magnitude improvement wrt current experiments in 1 year

Sensitivity to leptophilic DM (1/3)

 \rightarrow > 1 order of magnitude improvement wrt current experiments in 1 year

Sensitivity to leptophilic DM (2/3)

Inelastic scattering of sterile neutrino, mixing with neutrino through angle |U_{e4}|² off bound e⁻

> 1 order of magnitude improvement wrt current direct limits in 1 year

→ Phase space already rejected by indirect measurements (NuSTAR)

Sensitivity to leptophilic DM (3/3)

 \rightarrow O(1) order of magnitude improvement wrt current experiments in 1 year

Conclusions

Dual phase LAr TPC = one of leading techno for light (<10 GeV) DM search</p>

- Demonstrated by DS-50 → world best limits for WIMPs & leptophilic DM phase spaces
- Next generation DS-20k under construction \rightarrow start data taking in 2027
- In 1 year, expect >1 order of magnitude sensitivity improvement for a variety of DM models [WIMPs w/wo Migdal in MeV-GeV mass range – LDM, ALP, DP, SN in keV or sub-keV mass range]

arXiv:2407.05813 (submitted to Nature Communications)

□ IN2P3 = leader of DarkSide light DM searches

- Calibration of LAr ionisation response at low energy > see t
- DS-50 light dark matter searches
- DS-20k sensitivity to light dark matter particles

- see talk at GDR DUPHY 2021
- see talks at GDR DUPHY 2022, 2023
- this talk + GDR DUPHY 2024

Purified underground argon

- Argon isotopes: ⁴⁰Ar (stable) and ³⁹Ar (β emitter)
- Atmospheric ⁴⁰Ar is cosmogenically activated by cosmic rays \rightarrow ~1 Bq/kg in AAr
- ⁴⁰Ar present in underground wells (1400x depleted in ³⁹Ar) of CO₂ \rightarrow used for DS50 and DS20k

→ UAr extraction should start Q1 2025

LAr ionization response to ER / NR

Measurement of ionization yield at low E central for low mass WIMP search

PRD 104 (2021) 082005

ER ionization yield measured down to 180 eV_{er} and extrapolated to a few ionization electrons NR ionization yield measured down to ~500 eV_{nr}, the lowest ever achieved in liquid argon

Other signal models

Quenching fluctuations in NR

Sensitivity vs ³⁹argon activity

Prospective experiments

