

XENON

Latest Results from the **XENONNT** Experiment

Ananthakrishnan Ravindran On behalf of the XENON collaboration.

IRN Terascale | IP21 Lyon | Nov 13-15

Terascale

Nantes Université

O-O-O AUFRANDE

Co-funded by the European Union

The XENON Collaboration

Main Motivation

Discover Weakly Interacting Massive Particles (WIMPs).

Other studies

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS), $0v\beta\beta$, Solar Axions and ALPs, Supernovae, etc.

How we do it:

- Very low backgrounds: active and passive shielding, fiducialization, etc.
- Robust tools to correct detector effects and look for very small signals.
- Perform a "blind analysis".

The XENON Collaboration

XENONnT Experiment

3 Nested Detectors

Sharing the same DAQ

- LXe Dual Phase Time Projection Chamber (TPC) with 5.9t active volume. (Eur. Phys. J. C 84, 784 (2024), JCAPII(2020)031)
- Gd-doped Water
 Cherenkov Neutron
 Veto (NV).
- Gd-doped Water Cherenkov Muon
 Veto (MV) (2014 JINST 9 P11006)

Dual Phase Time Projection Chamber

- Particle interaction in LXe create both prompt scintillation(S1) and delayed ionization signals.
- Ionization electrons drifted upwards by drift field (E_{drift_XnT} = 23V/cm) and extracted into gas phase by extraction field (E_{extraction_XnT} = 2.9kV/cm); leads to electroluminescent light(S2).
- Signals collected a total of 493 PMTs in the top and bottom arrays.

3D Position Reconstruction	Energy Reconstruction
x, y : S2 hit pattern	Combined S1 and S2 area; calibrated with known sources.
z: Drift time of e-	

Recoil Type Discrimination: ER or NR?

Electronic Recoils (ER)

Nuclear Recoils (NR)

× | Neutrons ¥ ✓ × | Neutrinos (CEvNS) ↓ WIMPs

Camma & Beta
 Comma & Beta
 Comma & Beta
 Comma & Beta
 Comma & Background

Recoil Type Discrimination: ER or NR?

Other

Calibrations

Kr83m

TPC

and signal

correction.

Th232

High energy response.

YBe

Low energy NR

response

specially tuned

for the CEvNS

search.

XENONnT Science Data

- Science data divided into various Science Runs (SR). Total exposure ~340 days.
- Very stable detector conditions. <1%(<3%) variation in Light (Charge) Yield.

High liquid xenon purity: electron lifetime ~20ms

SRO Results: LowER

World leading laboratory results for 'Beyond Standard Model' Signals.

Events/(t·y·keV)

SRO Results: WIMPs

WIMP Mass $M_{\rm DM}$ [GeV/c²]

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- Neutrino interacting coherently with the nucleus due to the weak current, allowed by SM. First predicted in
 1974 (Phys. Rev. D 9, 1389). First observed by COHERENT in 2017 (D. Akimov et al, Science 357 (2017)).
- **Previously, never measured** with a Xenon target or with neutrinos from astrophysical sources.
- Solar neutrinos from ⁸B is expected to have the highest number of detectable signals in XnT.

Why measure ⁸B CEvNS?

- Important validation of solar neutrino spectrum and SM.
- Signal is almost indistinguishable from a 5.5GeV WIMP; important information about background to future WIMP searches.

⁸⁸YBe Calibration: Low Energy NR response

 152keV neutrons produced by photodisintegration of ⁹Be due to γ from ⁸⁸Y show similar recoil energy spectrum in TPC as ⁸B CEvNS.

• Excellent matching with model. Light and charge yield are constrained by fit of ⁸⁸YBe data on NEST model at 23V/cm.

Region of Interest for ⁸B CEvNS Signal

Region of Interest for ⁸B CEvNS Signal

arXiv:2408.02877 [nucl-ex]

Backgrounds: Accidental Coincidences(AC)

- ACs are accidental pairings of Isolated S1 and Isolated S2 signals.
- AC rate before mitigation:
 - ▶ Isolated S1 rate: ~15 Hz
 - ➢ Isolated S2 rate: ~150mHz
 - Raw AC rate: ~400 events/day

Backgrounds: Accidental Coincidences(AC)

- ACs are accidental pairings of Isolated S1 and Isolated S2 signals.
- AC rate before mitigation:
 - ▶ Isolated S1 rate: ~15 Hz
 - ➢ Isolated S2 rate: ~150mHz
 - Raw AC rate: ~400 events/day

- a) Time Shadow Cut: Uses the time correlation of the previous large S2 peak from HE event.
- **b) SI Boosted Decision Tree:** Uses information from the SI pulse and spatial distribution; discriminate signals from random PMT pileups.
- c) S2 Boosted Decision Tree: Uses S2 width correlation with diffusion of electron cloud during drift. No correlation expected for Isolated S2s.

Backgrounds: NR, ER and Surface

Prediction before Unblinding

Inference Likelihood

- Binned likelihood in **4-D space** (3⁴ bins).
- Likelihood dimensions: (cs2, S1 BDT, S2 BDT, Time Shadow)
- Separate terms for SRO and SR1.

Total Exposure: 3.51 ton years.

Expected Background: 26.4 \pm 1.5 events Expected Signal: 12 \pm 3 events

Unblinded Results

Unblinded Results

Low-mass WIMP Search

- Same dataset and analysis framework for CEvNS search is used.
- Here, ⁸B CEvNS becomes a background.
- **No excess** over background observed.
 - > New parameter space excluded.
 - First search into the neutrino fog.

Summary and Outlook

- First measurement of solar neutrinos with a DM detector and first measurement of CEvNS cross section in Xe. Observes ⁸B CEvNS at 2.73σ significance.
- XENONnT becomes the first experiment to step into the neutrino fog.
- XENONnT continues to collect blinded data: Precision measurements for CEvNS possible.
- Classical 3-fold WIMP analysis with more exposure ongoing. More exciting results very soon!

Backup Slides

XENONnT Infrastructure

Rn Column

- Continuous online distillation.
- 222 Rn conc (SR0): 1.8µBq/kg
- 222 Rn conc (SR1): 0.8μBq/kg

Eur. Phys. J. C (2022) 82: 1104

natKr/Xe concentration < 50 ppt Eur. Phys. J. C 77, 275 (2017)

nT DAQ

 Triggerless DAQ. Shared between three detectors. <u>2023 JINST 18 P07054</u>

Lxe Purification

- Removes electronegative impurities.
- Electron lifetime ~ 15ms.
- Turn-around time ~0.9 days for 8.6t.
 Eur. Phys. J. C (2022) 82: 860

Energy Calibration: g1,g2

- g1,g2 calculated using monoenergetic peaks in cs1-cs2 space and the 'doke' plot.
- Combined energy scale: $E_{ces} = 13.7 eV \times (cs1/g1 + cs2/g2)$

SR0	SR1
gl: (0.151 ± 0.001)PE/ph	gl: (0.136 ± 0.001)PE/ph
g2: (16.45 ± 0.64)PE/e	g2: (16.85 ± 0.46)PE/e

Corrections to Detector Effects

Calibrations using ^{83m}Kr

- Perform regular (~biweekly) calibration ٠ using internal calibration source. ^{83m}Kr **uniformly distributed** in the TPC
- ٠

Choice of Fiducial Volume

2023 WIMP analysis; FV chosen to give the best signal-background discrimination ratio.

2024 CEvNS analysis; FV chosen to exclude regions with limited detector modelling and higher background rates.

Regions **near the perpendicular wire are also excluded** from analysis as effects from the wire are not sufficiently well simulated, and thus may bias the S2 BDT score (trained on simulations).

Status of WIMP searches with LXe

Design sensitivity all the way to the neutrino fog in the WIMP Rol. arXiv:2410.17137 [hep-ex]

Impact on Signal from uncertainties on Yield

Two morphers t_{ly} and t_{qy} used to parameterize the

Morphers $(t_{ly} \text{ and } t_{qy})$ are used as nuisance parameters in the final inference.

Expected ⁸B rate at different light and charge yields.

AC Model: Validation

3.00

3.25 3.50

- The AC Model was validated on the AC sideband (events that fail the S2 width and S2 BDT cut) and the 0.27keV ³⁷Ar Lshell EC calibration data.
 - Shows good match. The <10% difference is considered while estimating the systematic uncertainties.

AC Sideband 100 200 300 400 500 SR0 200 100 SR1 200 300 400 500 100 cS2 [PE] 150 100 Events per bin 50 0.2 0.6 0.8 0.0 0.41.0 Quantile of S2_{pre} / $\Delta t_{\rm pre}$ 150 100 50 0.2 0.6 0.8 0.0 0.41.0 Quantile of S1 BDT score 150 100 50 0.2 0.6 0.8 0.00.41.0 Quantile of S2 BDT score

Time and Position Shadows

- High chance of a train of delayed electrons and lone hits after of **large S2** (or S1) from a HE event: HE S2 causes a "shadow effect".
- "Signal" uniformly distributed in time.
- Time shadow $(S2_{pre}/\Delta t)$ of **Iso-S1s** typically larger than of signal.

Function providing the position correlation of a large S2 and Iso-S2s, accounting for resolution.

• Using the position information, **Iso-S2s** can be removed by combination of time and position shadow.

Dedicated publication in preparation.

S1 BDT Features

Dedicated publication in preparation.

S2 BDT Features

Relies on information about the drift and diffusion of the electron cloud.

First: 50% area width

Second: Risetime

Third: 90% area width

Fourth: Drift time

Signal events will respect the diffusion model for the drift of the electron cloud; very identifiable distributions in some parameter spaces. ACs are random pairings; would not show the same patterns.