

Non-axion solutions to the strong CP problem and their phenomenology

Quentin Bonnefoy IPHC & U. of Strasbourg

IRN Terascale — IP21, Lyon 14/11/2024

Based on 2303.06156, 2311.00702 [hep-ph] + w.i.p. with L. Hall, C. A. Manzari, A. McCune, B. Noether & C. Scherb

de Strasbourg

Non-axion solutions to the strong CP problem and their phenomenology

(sub- to multi-)
TeV-scale

Based on 2303.06156, 2311.00702 [hep-ph] + w.i.p. with L. Hall, C. A. Manzari, A. McCune, B. Noether & C. Scherb

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^a G_{\rho\sigma}^a$$

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^a G_{\rho\sigma}^a$$

In there, two physical CP-violating quantities:

•
$$J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$
[Jarlskog '85]

•
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

In there, two physical CP-violating quantities:

• $J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$ [Jarlskog '85]

Well-measured! Accounts for all known CP violation (today)

• $\bar{\theta} = \theta + \arg \det(Y_u Y_d)$

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

In there, two physical CP-violating quantities:

• $J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$ [Jarlskog '85]

Well-measured! Accounts for all known CP violation (today)

• $\bar{\theta} = \theta + \arg \det(Y_u Y_d)$

Predicts a neutron electric dipole moment

[Baluni '79, Crewther/Di Vecchia/Veneziano/Witten '79]

$$\mathcal{L}_{\text{EDM}} \supset \frac{id_n}{2} \bar{n} \gamma_5 \gamma_{\mu\nu} n F^{\mu\nu}$$

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

In there, two physical CP-violating quantities:

•
$$J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$
[Jarlskog '85]

Well-measured! Accounts for all known CP violation (today)

•
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$

Predicts a neutron electric dipole moment

[Baluni '79, Crewther/Di Vecchia/Veneziano/Witten '79]

predicted to be
$$\approx 10^{-2} \bar{\theta} \, e \, \mathrm{GeV}^{-1}$$
 Ledm $\supset \frac{id_n}{2} \bar{n} \gamma_5 \gamma_{\mu\nu} n F^{\mu\nu}$ measured to be $\lesssim 10^{-12} \, e \, \mathrm{GeV}^{-1}$

Arises from the following terms of the SM lagrangian:

$$\mathcal{L}_{SM} \supset \bar{Q}Y_d dH + \bar{Q}Y_u u \tilde{H}$$

$$+ \frac{g_s^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^a G_{\rho\sigma}^a$$

In there, two phy

• $J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u \right]$

Strong CP problem:

$$\bar{\theta} \lesssim 10^{-10}$$

es :

d!Accounts for
violation (today)

• $\bar{\theta} = \theta + \arg \det(Y_u Y_d)$

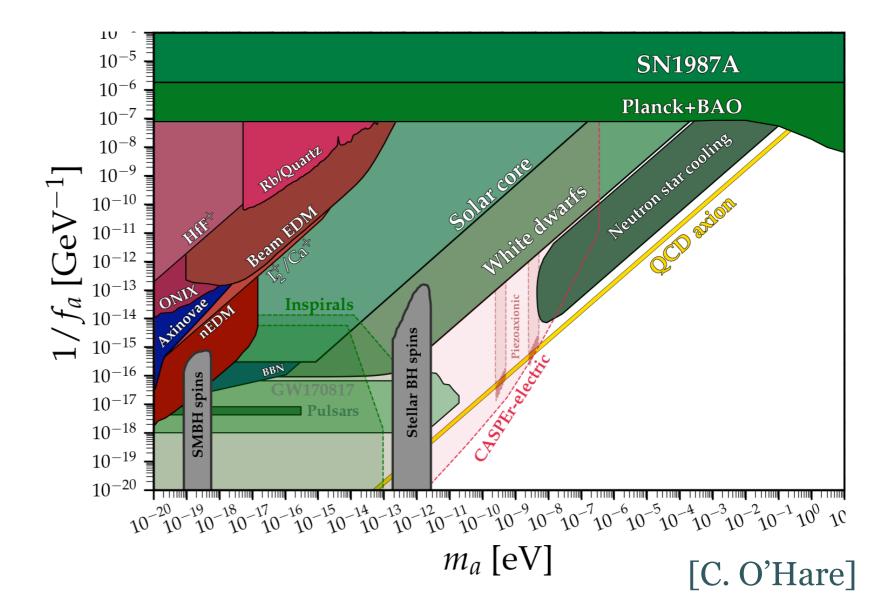
Predicts a neutron electric dipole moment

[Baluni '79, Crewther/Di Vecchia/Veneziano/Witten '79]

predicted to be
$$\approx 10^{-2} \bar{\theta} \, e \, \mathrm{GeV}^{-1}$$
 Ledm $\Rightarrow \frac{id_n}{2} \bar{n} \gamma_5 \gamma_{\mu\nu} n F^{\mu\nu}$ measured to be $\approx 10^{-2} \bar{\theta} \, e \, \mathrm{GeV}^{-1}$

Leading solution, axions : $\bar{\theta}=\left\langle \frac{a}{f_a} \right\rangle$ which dynamically relaxes to zero [Peccei/Quinn '77, Weinberg '78, Wilczek '78]

Leading solution, axions : $\bar{\theta}=\left\langle \frac{a}{f_a} \right\rangle$ which dynamically relaxes to zero [Peccei/Quinn '77, Weinberg '78, Wilczek '78]

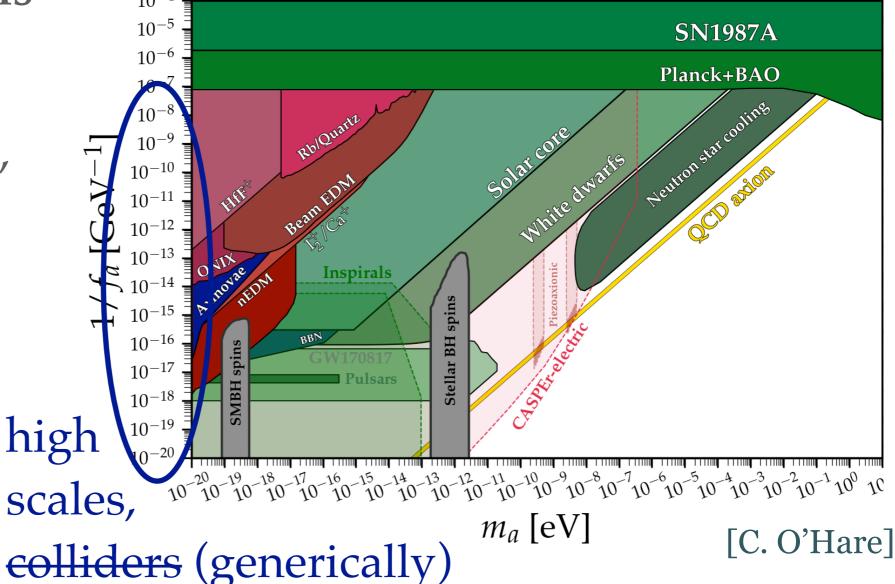

Greatly motivated, let's focus on the pheno: mostly non-collider BSM signals

Leading solution, axions : $\bar{\theta}=\left\langle \frac{a}{f_a} \right\rangle$ which dynamically relaxes to zero [Peccei/Quinn '77, Weinberg '78, Wilczek '78]

Greatly motivated, let's focus on the pheno: mostly non-

collider BSM signals

Dominated by lowenergy experiments, astrophysics, latetime cosmology (+ flavor, more model-dependent)

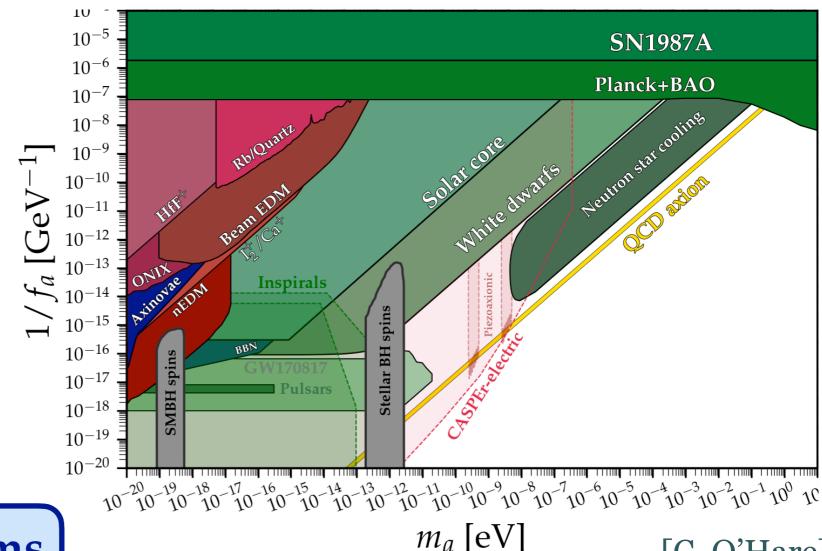


Leading solution, axions : $\bar{\theta}=\left\langle \frac{a}{f_a} \right\rangle$ which dynamically relaxes to zero [Peccei/Quinn '77, Weinberg '78, Wilczek '78]

Greatly motivated, let's focus on the pheno: mostly non-

collider BSM signals

Dominated by lowenergy experiments, astrophysics, latetime cosmology (+ flavor, more model-dependent)



Leading solution, **axions** : $\bar{\theta} = \left\langle \frac{a}{f_a} \right\rangle$ which dynamically [Peccei/Quinn '77, relaxes to zero Weinberg '78, Wilczek '78]

Greatly motivated, let's focus on the pheno: mostly non-

collider BSM signals

Dominated by lowenergy experiments, astrophysics, latetime cosmology (+ flavor, more model-dependent)

Today: other paradigms

[C. O'Hare]

Going back to $\bar{\theta} = \theta + \arg \det(Y_u Y_d)$:

- washed out from the IR by axions

```
Going back to \bar{\theta} = \theta + \arg \det(Y_u Y_d):
```

- washed out from the IR by axions
- can be washed out from the UV using **spontaneously**

broken spacetime symmetries (P or CP)

[Nelson '84, Barr '84,

Babu/Mohapatra '89, '90]

```
Going back to \bar{\theta} = \theta + \arg \det(Y_u Y_d):
```

- washed out from the IR by axions
- can be washed out from the UV using spontaneously

```
broken spacetime symmetries (P or CP)
```

```
[Nelson '84, Barr '84, Babu/Mohapatra '89, '90]
```

Energy

Going back to
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
:

- washed out from the IR by axions
- can be washed out from the UV using spontaneously

broken spacetime symmetries (P or CP)

[Nelson '84, Barr '84, Babu/Mohapatra '89, '90]

Energy

$$0 = \bar{\theta} = \theta + \arg\det(Y_u Y_d) 0$$

Going back to
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
:

- washed out from the IR by axions
- can be washed out from the UV using **spontaneously**

or CP

broken spacetime symmetries (P or CP)

[Nelson '84, Barr '84, Babu/Mohapatra '89, '90]

$$0 = \bar{\theta} = \theta' + \operatorname{arg} \det(Y_u Y_d)^{\dagger 0} \qquad 0 = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

Challenge:

$$\mathbf{0} = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^{\varsigma}$$

$$0 \approx \bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
still

$$0 \neq J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

now

Going back to
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
:

- washed out from the IR by axions
- can be washed out from the UV using spontaneously

or CP

broken spacetime symmetries (P or CP)

[Nelson '84, Barr '84, Babu/Mohapatra '89, '90]

$$0 = \bar{\theta} = \theta + \arg \det(Y_u Y_d) = 0$$

Challenge:

$$\mathbf{0} = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

$$0 \approx \bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
still

$$0 \neq J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$
now

Natural interplay with flavor physics

Going back to
$$\bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
:

- washed out from the IR by axions
- can be washed out from the UV using spontaneously

broken spacetime symmetries (P or CP)

[Nelson '84, Barr '84, Babu/Mohapatra '89, '90]

$$0 = \bar{\theta} = \theta + \underbrace{\arg \det(Y_u Y_d)}^{0}$$

Challenge:

$$\mathbf{0} = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

$$0 \approx \bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
still

$$0 \neq J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

Natural interplay with flavor physics, often TeV-scale pheno

or CP

With n>1 Higgs doublets, one can achieve

[Georgi '78,

Nebot/Botella/Branco '18,

Hall/Manzari/Noether '24,

Ferro-Hernández/Morisi/Peinado '24]

$$0 = \bar{\theta} = \theta + \arg \det(Y_u Y_d)^{-1}$$

$$\mathbf{0} = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

----- CP at the weak scale

$$0 \approx \bar{\theta} = \theta + \arg \det(Y_u Y_d)$$
still

$$0 \neq J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

now

With n>1 Higgs doublets, one can achieve

[Georgi '78,

Nebot/Botella/Branco '18,

Hall/Manzari/Noether '24,

Ferro-Hernández/Morisi/Peinado '24]

Energy

$$0 = \bar{\theta} = \theta' + \arg\det(Y_u Y_d)^{-1}$$

$$\mathbf{0} = J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$

------ CP at the weak scale

$$0 \approx \overline{\theta} = \theta + \arg \det(Y_u Y_d)$$
still

$$0 \neq J_4 = \operatorname{Im} \operatorname{Tr} \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]^3$$
 now

Always produces one light second Higgs doublet!

[Miro/Nebot/Queiroz '24]

Typical 2HDM pheno + additional flavor signals

Typical 2HDM pheno + additional flavor signals

Ex:

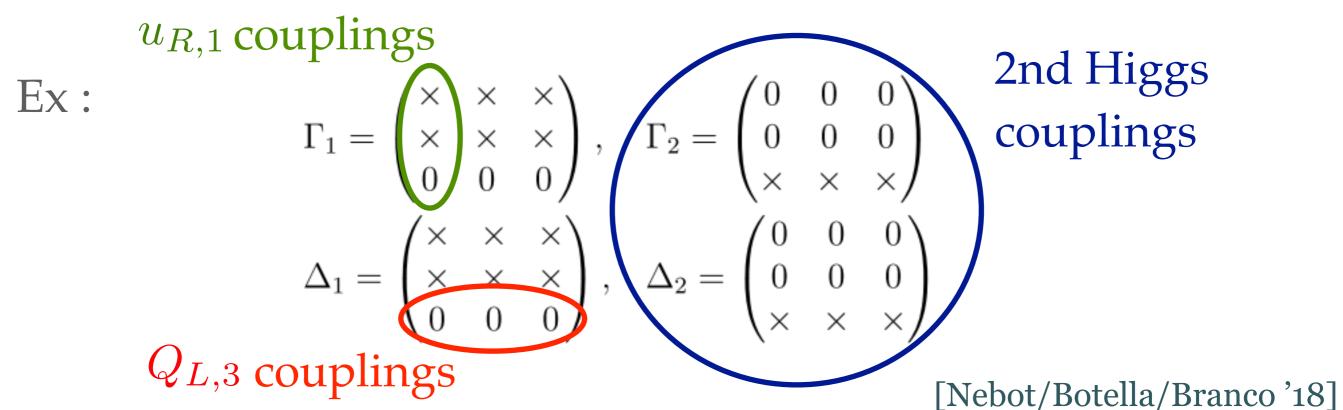
$$\Gamma_{1} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

$$\Delta_{1} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Delta_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

[Nebot/Botella/Branco '18]

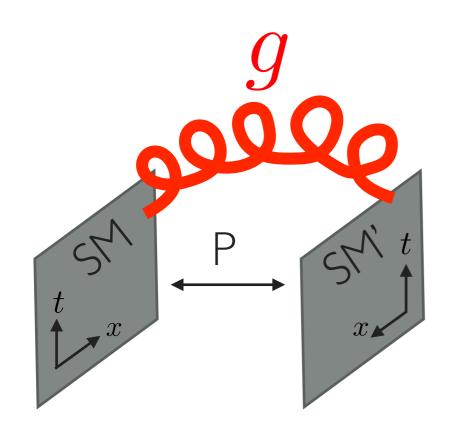
Typical 2HDM pheno + additional flavor signals

 $u_{R,1}$ couplings

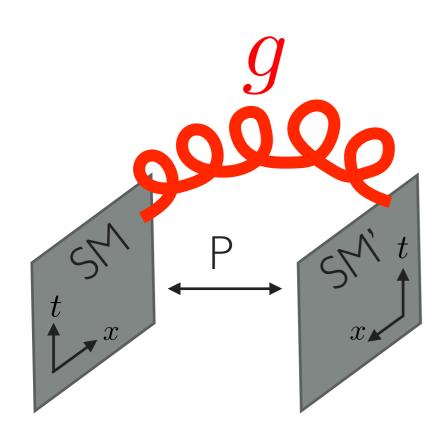

Ex:

$$\Gamma_1 = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$
 couplings $\Delta_1 = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 & 0 \end{pmatrix}, \quad \Delta_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$ $\Delta_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$

2nd Higgs


[Nebot/Botella/Branco '18]

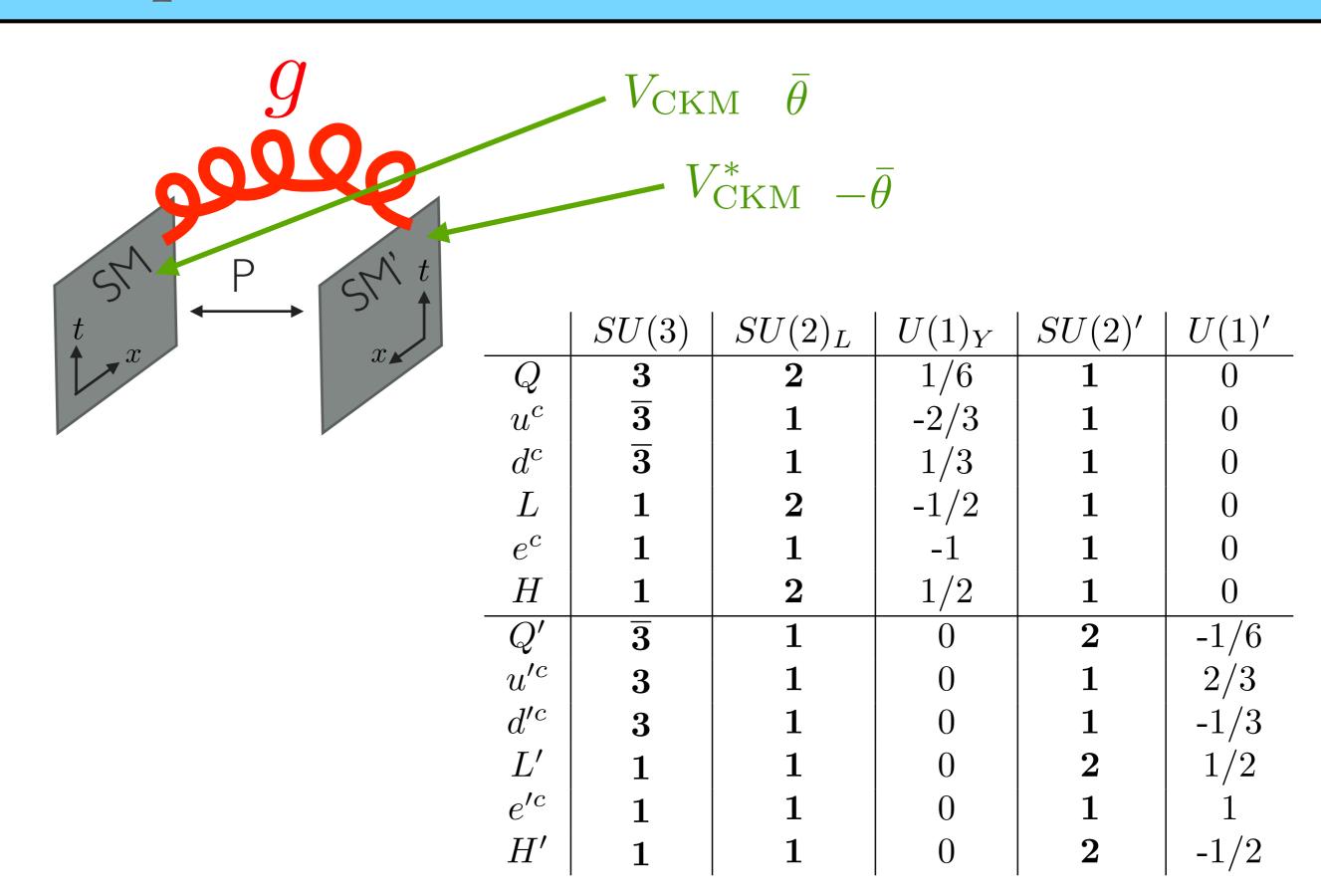
Typical 2HDM pheno + additional flavor signals

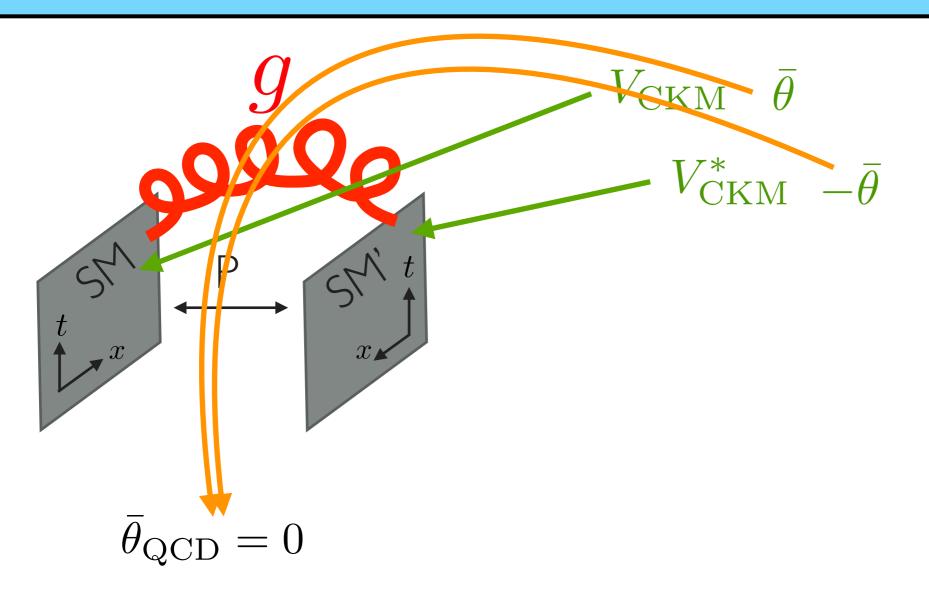

More work needed to scan the landscape of models: when do those setups really fulfill the strong constraints from the neutron EDM + flavor physics? What is the interplay with the flavor puzzle? Are there still light states in the case of soft breaking of CP? Etc.

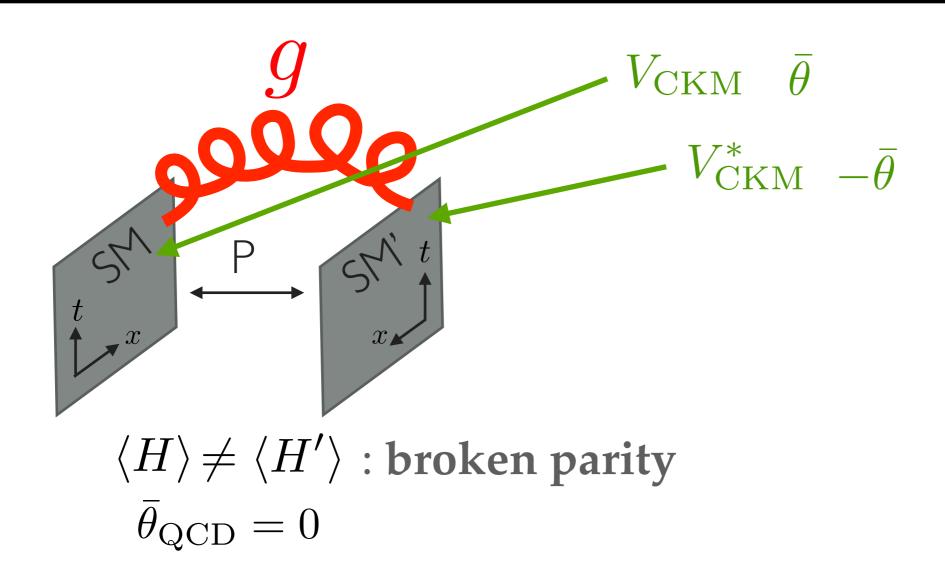
[Ferreira/Lavoura '19, QB/Hall/Manzari/Noether, w.i.p.]

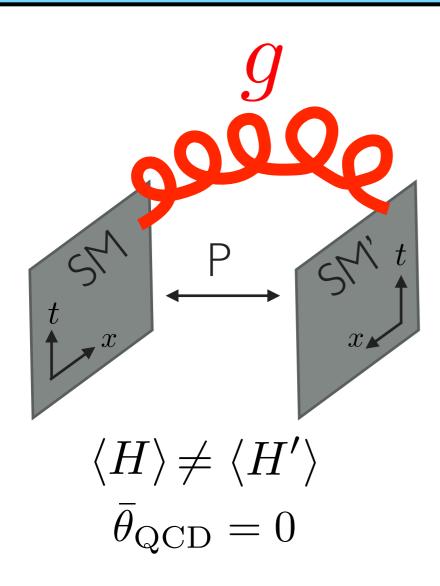
[Babu/Mohapatra '89, '90, Barr/Chang/Senjanovic '91, Hall/Harigaya '18, +Dunsky '18, Craig/Garcia Garcia/Koszegi/McCune '20, ...]

	SU(3)	$SU(2)_L$	$U(1)_Y$	SU(2)'	U(1)'
\overline{Q}	3	2	1/6	1	0
u^c	$\overline{3}$	1	-2/3	$oxed{1}$	0
d^c	$\overline{3}$	1	1/3	$oxed{1}$	0
L	1	2	-1/2	$oxed{1}$	0
e^c	1	1	-1	1	0
H	1	2	1/2	1	0
$\overline{Q'}$	$\overline{3}$	1	0	2	-1/6
u'^c	3	1	0	1	2/3
d'^c	3	1	0	$oxed{1}$	-1/3
L'	1	1	0	2	1/2
$e^{\prime c}$	1	1	0	$oxed{1}$	1
H'	$oxed{1}$	1	0	$oxed{2}$	-1/2

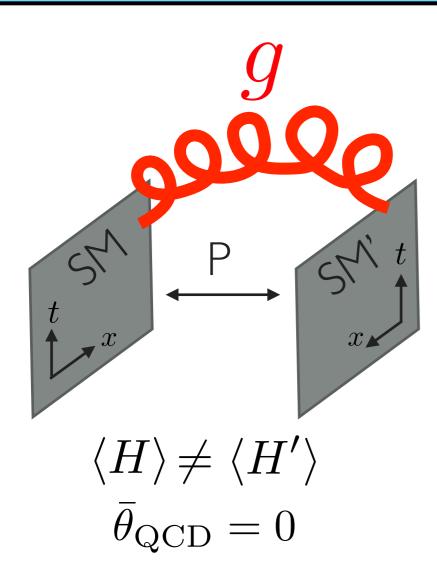



[Babu/Mohapatra '89, '90, Barr/Chang/Senjanovic '91, Hall/Harigaya '18, +Dunsky '18, Craig/Garcia Garcia/Koszegi/McCune '20, ...]


Mirror forces


	SU(3)	$SU(2)_L$	$U(1)_Y$	SU(2)'	U(1)'
Q	3	2	1/6	1	0
$egin{array}{c} Q \\ u^c \\ d^c \\ L \\ e^c \end{array}$	$egin{array}{c} rac{3}{3} \ \hline 3 \end{array}$	1	-2/3	1	0
d^c	$\overline{3}$	1	1/3	1	0
L	1	2	-1/2	1	0
e^c	1	1	-1	1	0
H	1	2	1/2	1	0
$\overline{Q'}$	$\overline{3}$	1	0	2	-1/6
$\begin{array}{c} u'^c \\ d'^c \\ L' \\ e'^c \end{array}$	3	1	0	1	-1/6 $2/3$
d'^c	3	1	0	1	-1/3
L'	1	1	0	2	1/2
$e^{\prime c}$	1	$oxed{1}$	0	1	1
H'	$oxed{1}$	1	0	$oldsymbol{2}$	-1/2

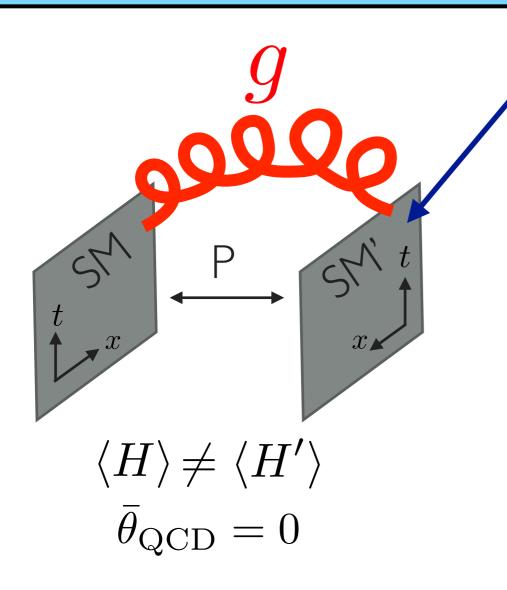
Mirror particles



Can have TeV scale pheno

(colored vector-like fermions, RH-coupled gauge fields, ...)

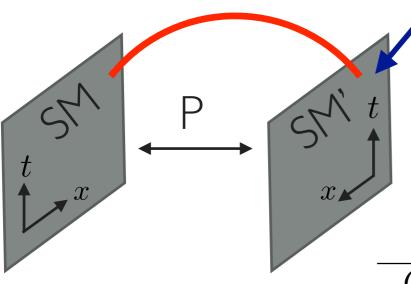
[D'Agnolo/Hook '15, Craig/Garcia Garcia/Koszegi/McCune '20]


Can have TeV scale pheno

(colored vector-like fermions, RH-coupled gauge fields, ...)

[D'Agnolo/Hook '15, Craig/Garcia Garcia/Koszegi/McCune '20]

But the mechanism works even when $\langle H' \rangle$ is quite high ... experimental probes?


Generically: only a (computable) large-ish neutron EDM.

There is a dark matter candidate here, the mirror electron

[Dunsky/Hall/Harigaya '19]

bicolored mediator with a vev

There is a dark matter candidate here, the mirror electron

To produce it thermally, need to embed into

	SU(3)	$SU(2)_L$	$U(1)_Y$	SU(3)'	SU(2)'	U(1)'
\overline{Q}	3	2	1/6	1	1	0
u^c	$\overline{3}$	1	-2/3	1	1	0
d^c	$\overline{3}$	1	1/3	1	1	0
$\frac{L}{e^c}$	1	2	-1/2	1	1	0
e^c	1	1	-1	1	1	0
H	1	2	1/2	1	1	0
$\overline{Q'}$	1	1	0	$\overline{3}$	2	-1/6
u'^c	1	1	0	3	1	2/3
d'^c	1	1	0	3	1	-1/3
L'	1	1	0	1	2	1/2
e'^c	1	$oxed{1}$	0	1	$oxed{1}$	1
H'	$oxed{1}$	$oxed{1}$	0	1	2	-1/2

[QB/Hall/Manzari/ Scherb '23, + McCune '23]

There is a dark matter candidate bicolored mediator here, the mirror electron with a vev To produce it thermally, now **not** all $\langle H' \rangle$ work! 10^{14} 10^{13} 10^{12} ■ DM region for central m_u v' [GeV] \square DM region for $m_u + 20\%$ 10^{11} Higgs parity region Excluded by DD ■ Excluded by Σ DWs Viable region, with colored particles in 10^{6} 10^{10} 10^{8} 10^{12} 10^{14} v_3 [GeV] the TeV - 100 TeV range

Outlook

The strong CP problem is usually associated to low-energy probes (or very high-energy ones, usually in cosmology)

Not the case for « UV » solutions to the problem, which may manifest themselves around the TeV: the strong CP problem can thus be investigated at those scales

A lot of work remains to be done regarding this (old) non-axion paradigm! Rich interplay with collider and flavor physics, but also cosmology, the hierarchy problem, etc