MadNIS — MadGraph Neural Importance Sampling

Theo Heimel November 2024

[2212.06172] TH, Winterhalder, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder [2408.01486] TH, Mattelaer, Plehn, Winterhalder [2411.00942] TH, Plehn, Schmal

UCLouvain

Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Introduction

2

 $I = \int \mathrm{d}x \, f(x)$

 $I = \left| \, \mathrm{d}x \, f(x) \right|$

$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

 $I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle$

$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

 $d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

Sum over channels MadGraph: build channels from Feynman diagrams

 $d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

Sum over channels MadGraph: build channels from Feynman diagrams

 $\alpha_i(x)$

 $d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

Sum over channels

MadGraph: build channels from Feynman diagrams

Channel weights

MadGraph: $\alpha_i \sim |M_i|^2$ or $\alpha_i \sim ||p_k^2 - m_k^2 - iM_k\Gamma_k|^{-2}$

How can we make event generation faster? Efficient integration and sampling from differential cross section

 $x \sim g_i(x)$

Channel mappings

MadGraph: use propagators, ... **Refine with VEGAS** (factorized, histogram based importance sampling)

MadNIS: Neural Importance Sampling

Overview

Improved training

Buffered training

Surrogate integrand

Basic functionality

Normalizing Flow

Neural Importance Sampling

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

Basic functionality

Neural Channel Weights

Normalizing Flow

MADNIS: Neural Importance Sampling

Neural Channel Weights

Prior Channel Weights

11

Loss function

12

Improved training

Buffered training

Buffered Training

Buffered Training

Buffered Training

VEGAS initialization

Improved training

VEGAS Initialization

VEGAS	Flow
Fast	Slow
Νο	Yes
	VEGAS Fast No

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

17

VEGAS Initialization

	VEGAS	FlOW
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

17

1. Excellent results by combining all improvements! 2. Same performance with buffered training 3. Even larger improvements for process with large interference terms

LHC processes

Scaling with multiplicity

 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. 7x better than VEGAS

> Large improvements compared to VEGAS even for high multiplicities and many channels!

 $gg \rightarrow t\bar{t}ggg$ 945 channels, 119 symm. 5x better than VEGAS

unw eff ϵ [%]

Differentiable MadNIS-Lite

Differentiable MadNIS-Lite [2408.01486] TH, Olivier Mattelaer, Tilman Plehn, Ramon Winterhalder

- Build PS mappings from Feynman diagrams
 → implemented in PyTorch
 - → Fully differentiable and invertible
 - Build in small trainable components, with parameters shared between → all components of same type → all channels
 - Learn physics of PS mappings
 - → interpretability
 - → train on n jets, generate n+1 jets

MadNIS technology for SFitter

• Apply neural importance sampling to SFitter likelihood

• Combined SMEFT fit in Higgs and Top sector \rightarrow 42 Wilson coefficients

 \rightarrow ~500 datapoints from various analyses

Efficient profiling and marginalization → before: days on CPU cluster

→ now: a few hours on a single GPU

Profile likelihood on ML steroids [2411.00942] TH, Tilman Plehn, Nikita Schmal

21

MadNIS technology for SFitter

• Apply neural importance sampling to SFitter likelihood

• Combined SMEFT fit in Higgs and Top sector \rightarrow 42 Wilson coefficients

 \rightarrow ~500 datapoints from various analyses

 Efficient profiling and marginalization → before: days on CPU cluster

→ now: a few hours on a single GPU

Profile likelihood on ML steroids [2411.00942] TH, Tilman Plehn, Nikita Schmal

22

Outlook

Release of MadNIS package

- python library
- easy install with 'pip install'
- \rightarrow December 2024

Release of MadGraph7 New MadEvent7 • fully vectorized mappings rigorous testing • multiple backends • reliable default settings dep. (c++, cuda, python,...) on hardware/process/...

Nov 2024

Fully integrate into MG5aMC

- multiple partonic processes
- optimized API
- merge with MG@GPU

MadNIS@NLO

- subtraction-aware sampling
- fast ML amplitudes (NLO)

Appendix

VEGAS algorithm

VEGAS algorithm

- High-dim and rich peaking functions \rightarrow slow convergence
- Peaks not aligned with grid axes \rightarrow phantom peaks

Normalizing Flows

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

sampling

Neural Channel Weights

Residual Block

Add prior

$$\alpha_{i\theta} = \beta_i(x) \exp \Delta_{i\theta}(x)$$

Normalization

$$\alpha_{i\theta}(x) \to \hat{\alpha}_{i\theta}(x) = \frac{\beta_i(x) \exp \Delta}{\sum_j \beta_j(x) \exp \beta_j(x)}$$

$$\beta_i(x) =$$

Prior Channel Weights

Improved Multichanneling

Use symmetries

Groups of channels only differ by permutations of final state momenta

 $\mathbf{1}$

use **common flows** and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

Reduced complexity Improved stability

 \checkmark

Channel dropping

MadNIS often **reduces contribution** of some channels to total integral

remove insignificant channels from the training completely

Learned channel weights

MadNIS often sends weight of many channels to 0 \checkmark dropping channels makes training and event generation more stable and efficient

Performance

- trained for n jets, used for n+1 jets \rightarrow performance like VEGAS (2) \rightarrow cheap training

channel-specific training ①

further improvements for VEGAS trained on top of MadNIS-Lite

Interpretability

Massless propagator s-invariant

- still room for improvement in underlying mapping
- t-invariant: large dependence on p^2

$2 \rightarrow 2$ scattering t-invariant

s-invariant: small energy-dependence, easily learned by VEGAS,

