

IRN Terascale (a) IP21 Lyon

SModelS v3 **Going Beyond Z₂ Topologies**

Based on: arXiv:2409.12942

S. Kraml, A. Lessa, S. Narasimha, T. Pascal, C. Ramos, Y. Villamizar and W. Waltenberger

Mohammad Mahdi Altakach

14.11.2024

Outline

- SModelS: the concept
- SModelS: version 3
- Physics application
- Conclusions

Introduction

Introduction

Searches for New Physics (NP) at the LHC: **Only portion of the data Channel-by-channel** in specific final states Chosen set of Simplified ModelS (SMS) is tested Few of many new ideas Phenomenologists' response: **Combine** data from multiple analyses for more robust constraints **Reinterpret** experimental results to explore a broader spectrum of theories

Introduction

- The **reuse** of experimental information is usually done in **2** ways:
 - **Recasting** of experimental analysis
 - Monte Carlo (MC) simulations are needed
 - **Reuse of simplified model results**
 - Upper limit (UL) maps and Efficiency Maps (EM) are needed

SModelS: public tool for fast reinterpretation of **LHC** searches using simplified model results This Ta

M. M. Altakach | IRN Terascale @ IP2I Lyon

CheckMATE 2, Rivet & Contur MadAnalysis 5, ADL, ColliderBit, **SimpleAnalysis**

SModelS the concept

SModelS working principle

- Decomposes the signatures of full BSM scenarios (particle content, masses, cross-sections, decay widths) into simplified model components with signal weights
- Confronts these components against the experimental constraints of the SModelS database
- Outputs presented as r-values (signal cross-section ratio to its upper limit)
- Also supports **global likelihood analyses** for more detailed statistical interpretations

)

Pros & cons of SModelS

- High speed (no MC simulation needed) and ease of use
- Suitable for model explorations and large parameter scans
- Easy classification of unconstrained cross section (**missing topologies**)
- **Disadvantages**:
 - Kinematic distributions of the signal and simplified model should be similar enough Limited to the SMS available in the database; larger database is needed for broader
 - applicability
 - Recasting may offer higher precision, though at a higher computational cost

Experimental results used in SModelS

• Upper limit Type:

- ▶ 95% CL upper limits on the signal cross section (σ_{95}) as function of the simplified model parameters
- $r = \left[\sigma \times BR \times BR\right] / \sigma_{95}$
- Excluded if $r \ge 1$
- Binary decision: excluded or not

Experimental results used in SModelS

Efficiency maps Type:

- Acceptance (A) & Efficiency (ε) of each
 Signal Region (SR) as function of the simplified model parameters
- **Different contributions** to the same **SR** can be added: $n_{sig} = A\epsilon \sum \left[\sigma \times BR \times BR\right] \times \mathscr{L}$
- Given expected & observed number of events, the signal likelihood can be computed
- Sophisticated statistical evaluations (likelihood ratio tests, CLs, ...)

Combination of likelihoods

- Combination of SR:
 - Requires correlation info; without it, only the most sensitive SR can be used **CMS**: covariance matrix, **ATLAS**: HistFactory model encoded in a json file
- Combination of analyses:
 - Assumes that those **analyses** are approximately uncorrelated
 - Combined likelihood is the product of the individual likelihoods from each analysis

Check T. Pascal's <u>talk</u> at Terascale (a) LPSC Grenoble

- **Z**₂ symmetry in **BSM** models:
 - Discrete symmetry distinguishing SM and **BSM** particles
 - Enforces pair production of BSM particles
- **Two-branch** Structure:
 - **Pair production** of **BSM** particles
 - Each **BSM** particle undergoes **cascade** decays, producing SM particles and terminating with the LSP

SModelS: pre-version 3

$[X_1, Y_1, Z_1], [X_2, Y_2]]$

- **Limitations** of the **two-branch** structure:
 - Can't deal with BSM scenarios without new parity conservation (non-Z₂ models):
 - Resonant (s-channel) production
 - Associated production **BSM** plus **SM** particles
 - Final states consisting of only **SM** particles

M. M. Altakach | IRN Terascale @ IP2I Lyon

SModelS: pre-version 3

$[X_1, Y_1, Z_1], [X_2, Y_2]]$

SModelS version 3

SModelS: version 3

- model topologies
- No need of an imposed **Z**₂ symmetry

M. M. Altakach | IRN Terascale @ IP2I Lyon

SModelS is fully restructured; now relies on a graph-based description of simplified

Graph-based topologies

- **Root node**: hard scattering (pp to produced particles)
- **Node:** particle appearing in the **SMS** topology
- Node indices: hold required information (Quantum Numbers (QN), mass, total width)
- Decays of SM particles not specified within the graph (given by SM values)

SMS matching

- Compare SMS topologies of the input model against those in the SModelS database.
- Criteria for matching topologies:
 - Same structure
 - Same particle properties
- Node matching:
 - Canonical names are equal
 - Particle attributes match
 - daughter nodes match, regardless of order

Physics application

- Extends the SM gauge group with an additional U(1)' symmetry
- New U(1)' implies a new gauge boson (Z')
- A scalar field (ϕ) and a Majorana fermion (χ) are introduced
- Only the SM quarks are charged under U(1); their charges are universal

ψ	q_L	u_R	d_R	l_L	l_R	H	ϕ	χ	_
$\mathrm{U}(1)'$	q_q	q_q	q_q	0	0	0	q_{ϕ}	q_χ	- Charges

- The 3 **BSM** mass eigenstates are: Z', S and χ
- The independent model parameters are: $m_{Z'}$, m_S , $m_{\chi'}$, $g_{\chi} \equiv g_{Z'}q_{\chi'}$, $g_q \equiv g_{Z'}q_q$ and $\sin \alpha$

 $g_{Z'}$: gauge coupling of U(1)', α : mixing angle between SM h and S

M. M. Altakach | IRN Terascale @ IP2I Lyon

LHC signals

The associated Z'S production is always subdominant to the on-shell (s-channel) production of Z'; we don't take it into account

M. M. Altakach | IRN Terascale @ IP2I Lyon

LHC signals

- The associated Z' S production is always subdominant to the on-shell (s-channel) production of Z'; we don't take it into account
- The relative importance of the di-quark and E_T^{miss} depends on: g_q/g_{χ} for the Z' mediator y_q/y_{χ} for the S mediator
- it into account

M. M. Altakach | IRN Terascale @ IP2I Lyon

q, χ	Process	Cross-Section	_
	$pp \to Z' \to q\overline{q}$	$\sigma \propto g_q^4$	-
	$pp \to Z' \to \chi \chi$	$\sigma \propto g_q^2 g_\chi^2$	
	$pp \to S \to q\overline{q}$	$\sigma \propto y_t^2 y_q^2 \sin^4 lpha$	$-2\sqrt{2}a - a$
$ar{q}, \chi$	$pp \to S \to \chi \chi$	$\sigma \propto y_t^2 y_\chi^2 \sin^2 2lpha$	$g_{\chi} - 2\sqrt{2} g_{Z'}q_{\chi}$

The S production is suppressed for a small value of α and by a loop factor; we don't take

The signal can be probed by di-quark (E_T^{miss} + jets:

ID	Signature

Ru

Dijet resonance $t\bar{t}$ resonance Dijet resonance b-jet resonance Monojet Monojet Multi-jet plus Displaced jets Ru b-jet resonance Dijet resonance

Dijet resonanc

ATLAS-EXOT-2019-03 [12] ATLAS-EXOT-2018-48 [13] CMS-EXO-19-012 [14] CMS-EXO-20-008 [15] CMS-EXO-20-004 [16] ATLAS-EXOT-2018-06 [17] ATLAS-SUSY-2018-22 [18] ATLAS-SUSY-2018-13 [19]

CMS-EXO-16-057 [20] CMS-EXO-12-059 [21] ATLAS-EXOT-2013-11 [22]

M. M. Altakach | IRN Terascale @ IP2I Lyon

The signal can be probed by di-quark (dijet, bb, tt) resonance searches & searches for

	Luminosity	SMS Topology	Type			
n 2–13 TeV						
e	$139{ m fb}^{-1}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL			
	$139{ m fb}^{-1}$	$pp \to Z' \to t \bar{t}$	UL			
e	$137{ m fb^{-1}}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL			
e	$138{ m fb}^{-1}$	$pp \to Z' \to b\overline{b}$	UL			
	$137{ m fb^{-1}}$	$pp \rightarrow Z', S \rightarrow \chi \chi$	$\mathbf{E}\mathbf{M}$			
	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	UL			
E_T^{miss}	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	$\mathbf{E}\mathbf{M}$			
	$139{ m fb^{-1}}$	$pp \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow jjj, jjj; \dots$	$\mathbf{E}\mathbf{M}$			
$n 1-8 \mathrm{TeV}$						
e	$19.7\mathrm{fb}^{-1}$	$pp \to Z' \to b\overline{b}$	UL			
e	$19.7\mathrm{fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL			
e	$20.3{ m fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL			

	ID	Signature	Luminosity	SMS Topology	Type
		Run 2–13	TeV		
r • 1,1	ATLAS-EXOT-2019-03 [12]	Dijet resonance	$139{ m fb}^{-1}$	$pp ightarrow Z' ightarrow jj, b ar{b}$	UL
as width	ATLAS-EXOT-2018-48 [13]	$t\bar{t}$ resonance	$139{ m fb^{-1}}$	$pp \to Z' \to t \bar{t}$	UL
results	CMS-EXO-19-012 [14]	Dijet resonance	$137{ m fb^{-1}}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL
results	CMS-EXO-20-008 [15]	b-jet resonance	$138{\rm fb}^{-1}$	$pp \to Z' \to b\overline{b}$	UL
	CMS-EXO-20-004 [16]	Monojet	$137{ m fb^{-1}}$	$pp \rightarrow Z', S \rightarrow \chi \chi$	$\mathbf{E}\mathbf{M}$
	ATLAS-EXOT-2018-06 [17]	Monojet	$139{ m fb^{-1}}$	$pp \to Z' \to \chi \chi$	UL
	ATLAS-SUSY-2018-22 [18]	Multi-jet plus E_T^{miss}	$139{ m fb^{-1}}$	$pp \to Z' \to \chi \chi$	$\mathbf{E}\mathbf{M}$
	ATLAS-SUSY-2018-13 [19]	Displaced jets	$139{ m fb}^{-1}$	$pp \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow jjj, jjj; \dots$	$\mathbf{E}\mathbf{M}$
		Run 1–8	TeV		
	CMS-EXO-16-057 [20]	<i>b</i> -jet resonance	$19.7{ m fb^{-1}}$	$pp \to Z' \to b\overline{b}$	UL
	CMS-EXO-12-059 [21]	Dijet resonance	$19.7{\rm fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL
	ATLAS-EXOT-2013-11 [22]	Dijet resonance	$20.3{ m fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL

M. M. Altakach | IRN Terascale @ IP2I Lyon

or

E_T^{miss} + jets:

ID Signature		Luminosity	SMS Topology	Type		
$\operatorname{Run}2 ext{-}13\mathrm{TeV}$						
ATLAS-EXOT-2019-03 [12]	Dijet resonance	$139{ m fb^{-1}}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL	rmiss 1 int	
ATLAS-EXOT-2018-48 [13]	$t\bar{t}$ resonance	$139{ m fb^{-1}}$	$pp \to Z' \to t \bar{t}$	UL	E_T + jet	
CMS-EXO-19-012 [14]	Dijet resonance	$137{ m fb^{-1}}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL	searches	
CMS-EXO-20-008 [15]	b-jet resonance	$138{ m fb}^{-1}$	$pp \to Z' \to b\overline{b}$	UL		
CMS-EXO-20-004 [16]	Monojet	$137{ m fb^{-1}}$	$pp ightarrow Z', S ightarrow \chi \chi$	EM		
ATLAS-EXOT-2018-06 [17]	Monojet	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	UL	Recasted	
ATLAS-SUSY-2018-22 [18]	Multi-jet plus E_T^{miss}	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	EM	•	
ATLAS-SUSY-2018-13 [19]	Displaced jets	$139{ m fb}^{-1}$	$pp \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow jjj, jjj; \dots$	\mathbf{EM}		
${ m Run} 1{-}8 { m TeV}$						
CMS-EXO-16-057 [20]	b-jet resonance	$19.7{ m fb^{-1}}$	$pp \to Z' \to b\overline{b}$	UL		
CMS-EXO-12-059 [21]	Dijet resonance	$19.7\mathrm{fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL		
ATLAS-EXOT-2013-11 [22]	Dijet resonance	$20.3{ m fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL		

M. M. Altakach | IRN Terascale @ IP2I Lyon

The signal can be probed by di-quark (dijet, bb, tt) resonance searches & searches for

+ jets

asted

The signal can be probed by di-quark (E_T^{miss} + jets:

ID	Signature	Luminosity	SMS Topology	Type			
${ m Run}~2 ext{}13{ m TeV}$							
ATLAS-EXOT-2019-03 [12]	Dijet resonance	$139{ m fb}^{-1}$	$pp ightarrow Z' ightarrow jj, b \overline{b}$	UL	R		
ATLAS-EXOT-2018-48 [13]	$t\bar{t}$ resonance	$139{ m fb}^{-1}$	$pp \to Z' \to t \bar{t}$	UL	SI		
CMS-EXO-19-012 [14]	Dijet resonance	$137{ m fb^{-1}}$	$pp ightarrow Z' ightarrow jj, b ar{b}$	UL	se		
CMS-EXO-20-008 [15]	$MS-EXO-20-008 [15] \qquad b-jet resonance$		$pp \to Z' \to b \overline{b}$	UL			
CMS-EXO-20-004 [16] Monojet		$137{ m fb^{-1}}$	$pp \to Z', S \to \chi \chi$	$\mathbf{E}\mathbf{M}$			
ATLAS-EXOT-2018-06 [17]	Monojet	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	UL			
ATLAS-SUSY-2018-22 [18]	Multi-jet plus E_T^{miss}	$139{ m fb}^{-1}$	$pp \to Z' \to \chi \chi$	$\mathbf{E}\mathbf{M}$			
ATLAS-SUSY-2018-13 [19]	Displaced jets	$139{ m fb}^{-1}$	$pp \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow jjj, jjj; \dots$	EM			
Run $1-8 \text{ TeV}$							
CMS-EXO-16-057 [20]	b-jet resonance	$19.7\mathrm{fb}^{-1}$	$pp \to Z' \to b \overline{b}$	UL			
CMS-EXO-12-059 [21]	Dijet resonance	$19.7\mathrm{fb}^{-1}$	$pp \rightarrow Z' \rightarrow jj$	UL			
ATLAS-EXOT-2013-11 [22]	Dijet resonance	$20.3{ m fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj$	\mathbf{UL}			

M. M. Altakach | IRN Terascale @ IP2I Lyon

The signal can be probed by di-quark (dijet, bb, tt) resonance searches & searches for

Parameter scan

SLHA format as input for **SModelS**:

LO cross-section for Z' production with Madgraph

M. M. Altakach | IRN Terascale @ IP2I Lyon

2MDM model

15001250 $g_q = 0.25$ $g_\chi = \sqrt{2}$ $2m_q^2$ $(\int_{X} \frac{1000}{750} geV$ $m_{Z'}^2$ 5002502000200 1000

 $m_{Z'} (\text{GeV})$

- Observed & expected exclusions:
 - Observed weaker than expected for ATLAS multijet & CMS; data > **SM** background
 - CMS: highest sensitivity (strongest) expected limit) & weaker observed limit; largest over-fluctuations
 - BR($Z' \rightarrow \chi \chi$) decreases with increasing m_{γ} ; loss of sensitivity close to $m_{Z'} = 2m_{\gamma}$

Observed UL

- Observed & expected exclusions (combined):
 - The combination extends the expected reach by 100 – 200 GeV
 - The combination observed exclusion is almost the same as the ATLAS multijet case $\underbrace{\searrow}_{U}$
 - A more robust limit is obtained

Expected & observed likelihoods vs μ $r = 1/\mu_{UL}$

M. M. Altakach | IRN Terascale @ IP2I Lyon

Resonance vs jets + MET searches

decay becomes kinematically suppressed)

 $m_{Z'} > 1.5$ TeV: di-quark resonance searches take over; ATLAS-EXOT-2019-03 has high constraining power in this region

M. M. Altakach | IRN Terascale @ IP2I Lyon

 $m_{Z'} < 1.2$ TeV: E_T^{miss} searches dominates (except for $m_{\gamma} \sim m_{Z'}/2$; invisible decay Z'

- The colours indicate which is the most constraining analysis (largest r_{obs})
- NWA

M. M. Altakach | IRN Terascale @ IP2I Lyon

Larger couplings, larger production cross-section: larger exclusion, larger width: no

For more accurate and statistically robust conclusions width dependent EM are needed

Conclusions

Conclusions

- SModelS is an easy-to-use public tool for fast reinterpretation of LHC searches on the basis of simplified-model results
- Version 3 can now deal with topologies beyond the Z₂ symmetry
- More EM type results are needed in order to perform more sophisticated studies
- Width-dependent results are very important to reinterpret resonance searches
- All results from arXiv:2409.12942 are available on Zenodo
- We thank ATLAS & CMS analyses teams for making their results accessible and reusable!

M. M. Altakach | IRN Terascale @ IP2I Lyon

Backup slides

Graphical & string representation of SMS in SModelS

- **SModelS** allows for an **interchangeable format** between graph and string representations
- **Graphical representation**:
 - Useful for visualising the SMS topologies
 - Provides an intuitive understanding of decay chains but may not be convenient for textual descriptions
- **String format representation:**
 - Uses a sequence of decay patterns: $X(i) \rightarrow A(j), B(k), C(l)$
 - X: **BSM** particle undergoing decay; A, B, C: decay products
 - Indices i, j, k, l denote node indices in the SMS graph, avoiding ambiguities

M. M. Altakach | IRN Terascale @ IP2I Lyon

Graphical & string representation of SMS in SModelS

- **Concrete example:**
 - Graphical SMS example: PV to gluino(1), su L(2)
 - \blacktriangleright gluino(1) to N1(3), q(4), q(5)
 - \blacktriangleright su L(2) to q(6), N1(7)

Simplified string representation in **SModelS** output:

- (PV \rightarrow gluino(1), su L(2)), (gluino(1) \rightarrow N1, q, q), (su L(2) \rightarrow q, N1)
- **Usage & Notation**:
 - **SModelS v3** database
 - quantum numbers, not necessarily tied to SUSY particles (databaseParticles.py)

M. M. Altakach | IRN Terascale @ IP2I Lyon

String format is utilized for specifying **SMS** topologies constrained by experimental results in the

Particle names like "gluino" or "N1" are generic placeholders for BSM particles with appropriate

Graph-based topologies: canonical name

- Describes the structure of the SMS topology without specifying its particle contents:
 - Each undecayed (final node) receives the label: 10
 - Each decayed node receives the label:

1<sorted labels of daughter nodes>0

The label associated with the root node uniquely describes the graph structure

SMS matching: an illustrative example

- Matching Steps:
 - Compare root nodes:
 - **Canonical names** match (no need to compare particle properties)
 - Compare daughter nodes (unordered):
 - Check if (gluino, N1) matches (MET, anyBSM) or (N1, gluino) matches (MET, anyBSM)
 - Result: gluino \leftrightarrow anyBSM, N1 \leftrightarrow MET
 - Match daughters of gluino and anyBSM:
 - Compare (g, N1) with (jet, MET)
 - Result: $g \leftrightarrow jet$, N1 \leftrightarrow MET
 - No more decays: stop, full match achieved

Changes in input model and parameter card

- Input model definition:
 - Defines BSM particles and their QN
 - Can be specified using a **Python** module or an **SLHA** file
 - **Z₂** parity **QN** (No longer required); ignored if included
 - **BSM** particle definition (Python module example):
 - New syntax for defining particles, e.g., for a left-handed down squark in MSSM:

M. M. Altakach | IRN Terascale @ IP2I Lyon

sdl = Particle(isSM=False, label='sd L', pdg=1000001, eCharge=-1/3, colordim=3, spin=0)

Changes in input model and parameter card

- Input model definition:
 - **SM** particles:
 - Properties (masses, BRs) are fixed and cannot be modified via input
 - **SM-**like Higgs assumed to have 125 GeV mass and **SM** BRs:
 - Use PDG Code 25 only for SM Higgs
 - Assign different PDG codes for non-SM-like scalars
 - Reason: Ensures correct matching with experimental results assuming SM Higgs decays

M. M. Altakach | IRN Terascale @ IP2I Lyon

Changes in input model and parameter card

Parameter card updates:

- New options:
 - ignorePromptQNumbers: Allows ignoring specific QN (e.g., spin, electric charge) for promptly decaying particles
 - outputFormat: New default string representation; old bracket notation format available with outputFormat = version2 option

Changes in the output

New String Representation:

- Replaces old bracket notation with a more compact string format for SMS topologies
 Converts back to bracket notation if outputFormat = version2 is set (for Z₂
- Converts back to bracket notation if of symmetry cases)

More compact & informative:

Particle masses information is displayed as a list of tuples, so it is clear which BSM particles the masses refer to

Graphical output option:

Users can generate visual representations of SMS topologies using the SModelS Python library

M. M. Altakach | IRN Terascale @ IP2I Lyon

Changes in the output

Version 2: Version 3: SMS ID: 1 Element ID: 1 SMS: (PV > N2(1), C1-(2)), (N2(1) > N1, higgs), (C1-(2) > N1, W-)Particles in element: [[[higgs]], [[W-]]] Masses: [(N2, 2.69E+02 [GeV]), (C1-, 2.69E+02 [GeV]), (N1, 1.29E+02 [GeV]), Final states in element: [N1, N1~] (N1\,, 1.29E+02 [GeV])] The element masses are Cross-Sections: Branch 0: [2.69E+02 [GeV],1.29E+02 [GeV]] Sqrts: 1.30E+01 [TeV], Weight: 3.92E-01 [pb] Branch 1: [2.69E+02 [GeV],1.29E+02 [GeV]] Sqrts: 8.00E+00 [TeV], Weight:1.74E-01 [pb] The element PIDs are PIDs: [1000023,1000022] PIDs: [1000024,1000022] The element weights are: Sqrts: 1.30E+01 [TeV], Weight: 3.92E-01 [pb] Sqrts: 8.00E+00 [TeV], Weight:1.74E-01 [pb]

M. M. Altakach | IRN Terascale @ IP2I Lyon

The lagrangian of the **2MDM** model:

 $\mathcal{L} = \mathcal{L}_{ ext{SM}}$ -

$$\mathcal{L}_{Z'} = g_{Z'} q_q \sum_q \bar{\psi}_q \gamma_\mu \psi_q Z'^\mu - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{1}{2} \sin \epsilon F'^{\mu\nu} B_{\mu\nu} ,$$

$$\mathcal{L}_{\phi} = (\mathcal{D}^{\mu} \phi)^{\dagger} (\mathcal{D}_{\mu} \phi) - \mu_2^2 |\phi|^2 - \lambda_2 |\phi|^4 - \lambda_3 |\phi|^2 |H|^2 ,$$

$$\mathcal{L}_{\chi} = \frac{i}{2} \overline{\chi} \partial \chi - \frac{1}{2} g_{Z'} q_{\chi} Z'^\mu \overline{\chi} \gamma^5 \gamma_\mu \chi - \frac{1}{2} y_{\chi} \overline{\chi} (P_L \phi + P_R \phi^*) \chi$$

- stringent experimental constraints
- The last term in \mathcal{L}_{χ} ensures a mass for χ and requires $q_{\phi} = -2q_{\chi}$

M. M. Altakach | IRN Terascale @ IP2I Lyon

$$+ \mathcal{L}_{Z'} + \mathcal{L}_{\phi} + \mathcal{L}_{\chi}$$

The mixing angle ϵ between Z' and the hypercharge gauge boson B is set to zero due to

The scalar S and the SM Higgs h correspond to linear combinations of the neutral components of ϕ and H:

 $h = H^0 \cos \alpha - \phi^0 \sin \alpha$ $S = \phi^0 \cos \alpha + H^0 \sin \alpha$

The **BSM** masses are given by:

$$m_{Z'} = 2g_{Z'}q_{\chi}v_2, \ m_S^2 = m_h^2 + 2\frac{\lambda_3}{\sin 2\alpha}vv_2, \ \text{and} \ m_{\chi} = \frac{y_{\chi}}{\sqrt{2}}v_2$$

Thus:

 $y_{\chi} = 2v$

M. M. Altakach | IRN Terascale @ IP2I Lyon

$$\sqrt{2} \, g_{Z'} q_{\chi} \; {m_{\chi} \over m_{Z'}}$$

Feynman rules for the relevant interactions of Z', S and χ :

	-
Interaction	Vertex term
$Z_{\mu}^{\prime}qar{q}$	$ig_q\gamma^\mu$
$Z'_\mu \chi \chi$	$\Big -ig_\chi \gamma^\mu \gamma^5$
$Sfar{f}$	$\Big -i rac{m_f}{v} \sin lpha$
$S\chi\chi$	$\left \begin{array}{c} -2ig_{\chi} rac{m_{\chi}}{m_{Z'}} \cos lpha \end{array} ight.$
$S W^\mu W^+_ u$	$2ig^{\mu u}rac{m_W^2}{v}\sinlpha$
$SZ_\muZ_ u$	$2ig^{\mu u}rac{m_Z^2}{v}\sinlpha$
Shh	$\left \begin{array}{c} -i rac{m_S^2}{2m_{Z'} v} \left(1+2 ight. ight.$
$S Z'_{\mu} Z'_{ u}$	$4ig^{\mu u}g_{\chi}m_{Z'}\cos^{2}$

M. M. Altakach | IRN Terascale @ IP2I Lyon

$$\left(\frac{m_h^2}{m_S^2}\right) \left(m_{Z'}\coslpha + 2g_\chi v\sinlpha
ight)\sin(2lpha)$$

lpha

$$\begin{split} \mathbf{F} \text{ The decay widths:} & \Gamma(S \to \ell\bar{\ell}) = \frac{m_S}{16\pi} \frac{m_l^2}{v^2} \left(1 - \frac{4m_\ell^2}{m_S^2}\right)^{3/2} \sin^2 \alpha \,, \\ \Gamma(Z' \to q\bar{q}) = \frac{g_q^2 m_{Z'}}{4\pi} \sqrt{1 - \frac{4m_q^2}{m_{Z'}^2}} \left(1 + \frac{2m_q^2}{m_{Z'}^2}\right), & \Gamma(S \to q\bar{q}) = 3\frac{m_S}{16\pi} \frac{m_q^2}{v^2} \left(1 - \frac{4m_q^2}{m_S^2}\right)^{3/2} \sin^2 \alpha \,, \\ \Gamma(Z' \to \chi\chi) = \frac{g_\chi^2 m_{Z'}}{24\pi} \left(1 - \frac{4m_\chi^2}{m_{Z'}^2}\right)^{3/2} \,. & \Gamma(S \to \chi\chi) = g_\chi^2 \frac{m_S}{4\pi} \frac{m_\chi^2}{m_{Z'}^2} \left(1 - \frac{4m_\chi^2}{m_S^2}\right)^{3/2} \cos^2 \alpha \,, \\ \Gamma(S \to WW) = \frac{m_S^3}{16\pi v^2} \sqrt{1 - \frac{4m_W^2}{m_S^2}} \left(1 - \frac{4m_W^2}{m_S^2} + \frac{12m_W^4}{m_S^4}\right) \sin^2 \alpha \,, \\ \Gamma(S \to \chi\chi) = g_\chi^2 \frac{m_S}{4\pi} \frac{m_Z^2}{m_{Z'}^2} \left(1 - \frac{4m_\chi^2}{m_S^2}\right)^{3/2} \cos^2 \alpha \,, \\ \Gamma(S \to WW) = \frac{m_S^3}{16\pi v^2} \sqrt{1 - \frac{4m_W^2}{m_S^2}} \left(1 - \frac{4m_W^2}{m_S^2} + \frac{12m_W^4}{m_S^4}\right) \sin^2 \alpha \,, \\ \Gamma(S \to WW) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 - \frac{4m_Z^2}{m_S^2}\right)^{3/2} \cos^2 \alpha \,, \\ \Gamma(S \to WW) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 - \frac{4m_Z^2}{m_S^2}\right) \left(1 - \frac{4m_Z^2}{m_S^2} - \frac{12m_Z^4}{m_S^4} - 1\right) \sin^2 \alpha \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_{Z'}^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \left(1 + 2\frac{m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \left(1 + \frac{4m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \left(1 + \frac{4m_R^2}{m_S^2}\right)^2 \sqrt{1 - \frac{4m_R^2}{m_S^2}} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{128\pi v^2 m_Z^2} \,, \\ \Gamma(S \to hh) = \frac{m_S^3}{$$

M. M. Altakach | IRN Terascale @ IP2I Lyon

 $\sin^2 lpha$, $n^2 \alpha$,

Why we exclude the scalar production

section, unless $g_q \ll \sin \alpha$ and/or $m_S \ll m_{Z'}$: LHC@13 TeV 10^3 10^{2} 10^{1} $\sigma ~(pb)$ 10^{0} 10^{-1} $g_q = 0.1$ $\sin \alpha = 0.3$ 10^{-3} 400600 200

M. M. Altakach | IRN Terascale @ IP2I Lyon

The spin-0 production cross-section is typically much smaller than the spin-1 cross

2MDM model

Cross-sections for the resonant production of the spin-1 and spin-0 mediators at the **LHC**. The Z'coupling to quarks is fixed to $g_q = 0.1$, while the *S*–*h* mixing angle is $\sin \alpha = 0.3$ Computed at leading order using MadGraph5

Why we exclude the scalar production

- The current limit on α is $\sin \alpha < 0.27$ arXiv:2305.16169
- Even if we saturate this bound the S production cross-section is too small to be probed by resonance or E_T^{miss} searches
- The expected r-value $\left(r_{exp}^{max} = \sigma(pp \rightarrow S) / \sigma_{UL}^{exp}\right)$ is much smaller than 1, indicating no potential exclusion by the CMS monojet search

Ratio of *S* production cross-section to its expected 95% CL upper limit from CMS-EXO-20-004. The dashed black line denotes the limit from Higgs signal strength measurements. (r_{exp}^{max} : BR($S \rightarrow \chi \chi$) = 100 %).

Parameter scan

Note on the Z' width:

- Large for high values of g_q and g_{χ} ; NWA not valid
 - Only CMS-EXO-19-012 provides width dependent results; other resonance searches can only be used in the NWA
 - $E_T^{miss} + \text{jets searches valid up to}$ $\Gamma_{Z'}/m_{Z'} \simeq 5\%$

 $\begin{tabular}{lll} $\Gamma_{Z'}/m_{Z'}$ always larger than 1 %, can reach up to 5.6 % \end{tabular}$

- In the NWA & for $m_{\chi} \ll m_{Z'}$ the signal in the E_T^{miss} channel is $\propto g_q^2 \frac{1}{1 + g_q^2/g_\chi^2}$
 - For fixed g_q the signal increases with g_{γ}
 - For fixed g_{γ} the signal increases with g_{q}
 - Altogether, the signal increases or decreases with both g_q and g_{χ}

Exclusion lines in the from the combination of the ATLAS multijet and the CMS monojet searches, for three different choices of couplings

Constraints from di-quark resonance searches

Constraints from di-quark resonance searches

ATLAS-EXOT-2019-03 is more sensitive than CMS-EXO-19-012

- ► ATLAS-EXOT-2018-48 is more sensitive than CMS-EXO-20-008
- ► ATLAS-EXOT-2019-03 is the most sensitive for high-mass range

M. M. Altakach | IRN Terascale @ IP2I Lyon

• Combining ATLAS and CMS dijet searches would average out fluctuations and provide more robust limits

