

MicrOMEGAs 6: new developments and physics applications

IRN Terascale meeting

November 2024, IP2I - Lyon

Andreas Goudelis LPCA – Clermont Ferrand

What is micrOMEGAs ?

https://lapth.cnrs.fr/micromegas/

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6). For any BSM model, the code can:

 \cdot Figure out which processes are relevant for the evolution of the freeze-out/freeze-in dark matter cosmic abundance.

 \cdot Compute the relevant matrix elements.

Based on CalcHEP. By default tree-level 1/2 $\leftrightarrow\,$ 2, possibility for some 2 \rightarrow 3/4 . Possibility to replace <0v> with own expression.

- \cdot Solve the necessary Boltzmann equations.
- \cdot Compute additional observables, compare to EXP limits, link to other packages.

What is micrOMEGAs ?

https://lapth.cnrs.fr/micromegas/

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6). For any BSM model, the code can:

 \cdot Figure out which processes are relevant for the evolution of the freeze-out/freeze-in dark matter cosmic abundance.

 \cdot Compute the relevant matrix elements.

Based on CalcHEP. By default tree-level 1/2 $\leftrightarrow\,$ 2, possibility for some 2 \rightarrow 3/4 . Possibility to replace <0v> with own expression.

 \cdot Solve the necessary Boltzmann equations.

 \cdot Compute additional observables, compare to EXP limits, link to other packages.

Development of micrOMEGAs

micrOMEGAs: A program for calculating the relic density in the MSSM G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ¹	Neutralino DM relic density in the MSSM. Based on CompHEP for ME calculation. arXiv:hep-ph/0112278
 micrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model . G. Bélanger¹, F. Boudjema¹, A. Pukhov², A. Semenov³ 	Freeze-out calculation of DM relic density in generic extensions of the SM. CalcHEP. arXiv:hep-ph/0607059
micrOMEGAs_3 : a program for calculating dark matter observables	Asymmetric DM, semi-annihilations, generalized thermodynamics, DD/ID/LHC.
G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ³	um.1505.0257
micrOMEGAs4.1: two dark matter candidates	Two generic frozen-out dark matter components.
G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ³	arXiv:1407.6129
micrOMEGAs 5.0: freeze-in	Incorporation of freeze-in dark matter production mechanism (one-component).
G. Bélanger ^{1†} , F. Boudjema ^{1‡} , A. Goudelis ^{2§} , A. Pukhov ^{3¶} , B. Zaldivar ^{1††}	arXiv:1801.03509
micrOMEGAs 6.0: N-component dark matter	Arbitrary number of (frozen in/out) dark
G. Alguero ¹ , G. Bélanger ² , F. Boudjema ² , S. Chakraborti ³ , A. Goudelis ⁴ , S. Kraml ¹ , A. Mjallal ² , A. Pukhov ⁵	arXiv:2312.14894

+ intermediate versions. Until 2013, the *only* DM code to handle generic SM extensions.

What is new in MO6 ?

Numerous new features have been implemented in the latest version :

 \cdot Major upgrade : possibility to compute the DM cosmic abundance in models with multiple WIMP+FIMP dark matter candidates + consistent computation of relevant experimental constraints.

 \cdot Major upgrade : inclusion of conversion-driven freeze-out ("co-scattering") and decay terms in the Boltzmann equations.

 \cdot Possibility to define (and, partly, check) which sets of particles are in thermal equilibrium.

 \cdot Possibility to take into account "backreactions" in feebly coupled dark matter scenarios.

· Possibility to include 2 \rightarrow 3 and 2 \rightarrow 4 processes in single-component DM models.

 \cdot Improvements in freeze-in computations related to in-medium, finite-temperature effects to avoid spurious high-temperature behaviours.

 \cdot Additional functionalities for direct/indirect detection.

Multi-component dark matter : strategy

Assumption : some discrete symmetries Z_i are imposed at the Lagrangian, under which particles transform differently. Divide the model into *sectors* :

 \cdot Freeze-in/freeze-out + intermediate scenarios can be implemented through the same set of equations by modifying the initial conditions.

NB: Kinetic equilibrium is assumed even for FIMPs, otherwise need to solve un-integrated Boltzmann eqs!

Validation and example results

The code was validated using different models as examples :

- \cdot Singlet scalar (sanity checks for single-component DM, 1 WIMP or 1 FIMP).
- · Z5M (two singlets w/ Z_5 symmetry 2 WIMPs or 1 WIMP + 1 FIMP).
- · Z4IDSM (Inert Doublet plus Singlet w/ Z_4 symmetry 1 WIMP + 1 FIMP).

Two examples from the Z5M :

Excellent agreement w/ previous versions until decays become relevant.

Improvements for other observables

• Direct detection:

In general multi-component models, one cannot naïvely impose DD limits: simple rescaling by the fraction of each component is not enough.

In MO6 a function is provided in order to compute whether a model is excluded or not by the leading DD experiments.

• Indirect detection:

In previous versions the DM annihilation – induced photon spectra (Pythia 6) were tabulated down to DM masses of \sim 2 GeV. For lighter DM, need to consider different final states.

In MO6 the gamma-ray tables have been updated/improved to include annihilations into light leptons, pions, Kaons.

• Structure formation:

Free-streaming length of DM particles through:

$$\lambda_{FS} = \int_{T_2}^{T_1} \left(1 + \left(\frac{a(T)m}{a(T_1)p} \right)^2 \right)^{-\frac{1}{2}} \frac{dT}{a(T)\overline{H}(T)T}$$

Another application: FI at strong coupling

Usually, relic abundance calculations are performed assuming T_R to be much larger than all mass scales in the theory. However, this is an arbitrary assumption.

· Consider the singlet scalar model : $-\Delta \mathcal{L}_{scal} = \frac{1}{2} \lambda_{hs} H^{\dagger} H s^2$

· If $T_R < m_s \rightarrow$ Production becomes Boltzmann-suppressed \rightarrow Larger couplings required for successful freeze-in.

 \cdot Backreactions can become relevant \rightarrow Can be computed with micrOMEGAs 6.

Another application: FI at strong coupling

Usually, relic abundance calculations are performed assuming T_R to be much larger than all mass scales in the theory. However, this is an arbitrary assumption.

· Consider the singlet scalar model : $-\Delta \mathcal{L}_{scal} = \frac{1}{2} \lambda_{hs} H^{\dagger} H s^2$

· If $T_R < m_s \rightarrow$ Production becomes Boltzmann-suppressed \rightarrow Larger couplings required for successful freeze-in.

 \cdot Backreactions can become relevant \rightarrow Can be computed with micrOMEGAs 6.

 Smooth passage from freeze-in to freeze-out, as backreactions become more important.

 \cdot New parameter space regions open up, which re-motivates old (and new) searches.

Traditional dark matter searches remain relevant

Summary and outlook

 \cdot Since ~10 years, relic density calculations with MicrOMEGAs have evolved substantially in order to support :

- \rightarrow More sophisticated model structures.
- \rightarrow Different thermodynamical (dark matter generation) mechanisms.
- \cdot MicrOMEGAs 6 can now handle scenarios with :

 \cdot Numerous improvements have been introduced both for the calculation of the relic density (taming singular behaviours, multi-body final states) and of different observables (DD/ID, free-streaming length).

 \cdot Many ideas for further improvements (modified cosmological history, phase transitions). Ultimate goal: unintegrated Boltzmann equations.

Additional material

Multi-WIMP case

Any DS may (or may not) contain a dark matter candidate. The evolution of the μ -th candidate's abundance as a function of the entropy density follows :

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} = \sum_{\alpha \leq \beta; \ \gamma \leq \delta} Y_{\alpha} Y_{\beta} C_{\alpha\beta} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle (\delta_{\mu\alpha} + \delta_{\mu\beta} - \delta_{\mu\gamma} - \delta_{\mu\delta})$$

where:

$$\begin{vmatrix} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle = \frac{1}{C_{\alpha\beta}\bar{n}_{\alpha}(T)\bar{n}_{\beta}(T)} \sum_{\substack{a \in \alpha, b \in \beta, c \in \gamma, d \in \delta \\ \text{if}(\alpha=\beta)a \leq b; \text{ if}(\gamma=\delta)c \leq d}} \bar{N}_{a,b\to c,d} \\ \bar{N}_{a,b\to c,d} = \frac{Tg_ag_b}{8\pi^4} \int \sqrt{s}p_{ab}^2(s)K_1(\frac{\sqrt{s}}{T})C_{ab}\sigma_{a,b\to c,d}(s)ds \end{vmatrix}$$

NB: Greek indices \leftrightarrow different DS's. Latin indices \leftrightarrow different species within a DS.

Multi-WIMP case

177

Any DS may (or may not) contain a dark matter candidate. The evolution of the μ -th candidate's abundance as a function of the entropy density follows :

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} = \sum_{\alpha \leq \beta; \ \gamma \leq \delta} Y_{\alpha} Y_{\beta} C_{\alpha\beta} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle (\delta_{\mu\alpha} + \delta_{\mu\beta} - \delta_{\mu\gamma} - \delta_{\mu\delta})$$

where: $\begin{cases}
\langle v\sigma_{\alpha\beta\gamma\delta} \rangle = \frac{1}{C_{\alpha\beta}\bar{n}_{\alpha}(T)\bar{n}_{\beta}(T)} \sum_{\substack{a \in \alpha, b \in \beta, c \in \gamma, d \in \delta \\ \text{if}(\alpha=\beta)a \leq b; \text{ if}(\gamma=\delta)c \leq d}} \bar{N}_{a,b\to c,d} \\
\bar{N}_{a,b\to c,d} = \frac{Tg_ag_b}{8\pi^4} \int \sqrt{s}p_{ab}^2(s)K_1(\frac{\sqrt{s}}{T})C_{ab}\sigma_{a,b\to c,d}(s)ds
\end{cases}$

If some particle species in a DS decay slowly, we get additional terms of the type :

$$\frac{1}{\mathfrak{s}^2(T)} \sum_{\alpha; \gamma \le \delta} \left(\frac{Y_\alpha}{\bar{Y}_\alpha} - \frac{Y_\beta}{\bar{Y}_\beta} \frac{Y_\gamma}{\bar{Y}_\gamma} \right) \left(\delta_{\mu\alpha} - \delta_{\mu\beta} - \delta_{\mu\gamma} \right) \sum_{a \in \alpha, c \in \beta, d \in \gamma} \bar{N}_{a \to c, d}$$

where: $\bar{N}_{a\to c,d} = \frac{Tg_a}{2\pi^2} m_a^2 \Gamma^0(a \to c, d) K_1\left(\frac{m_a}{T}\right)$

Andreas Goudelis

Including co-scattering, freeze-in

Co-scattering corresponds to processes of the type $\mu + 0 \rightarrow \nu + 0$. It turns out that these contributions enter the Boltzman eqs. similarly to decay terms $\mu \rightarrow \nu + 0$

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} \approx \left(Y_{\mu} - Y_{\nu}\frac{\bar{Y}_{\mu}}{\bar{Y}_{\nu}}\right)\Gamma_{\mu\to\nu}$$

where:

$$\Gamma_{\mu \to \nu} = Y_0 \langle \sigma_{\mu 0 \nu 0} v \rangle (T) + \frac{\sum_{a \in \mu, c \in \nu} g_a m_a^2 \Gamma^0(a \to c, 0) K_1\left(\frac{m_a}{T}\right) + \sum_{a \in \nu, c \in \mu} g_a m_a^2 \Gamma^0(a \to c, 0) K_1\left(\frac{m_a}{T}\right)}{\sum_{a \in \mu} g_a m_a^2 K_2\left(\frac{m_a}{T}\right)}$$

can be seen as an effective width between sectors μ and ν .

Freeze-in can also be implemented through the same set of equations, but setting the initial DM abundance to zero as usual.

 Important difference wrt single-component case: DM annihilations are taken into account.
 NB: Kinetic equilibrium is assumed even for FIMPs, otherwise need to solve un-integrated Boltzmann egs!

Andreas Goudelis

Issues with *t*-channels : the problems

Although in principle quite straightforward, processes involving particle exchange in the *t*-channel may present some peculiarities :

Spin-1 particle exchange leads to constant σ at high temperatures $\rightarrow Y_{\text{DM}} \sim T_{\text{R}}$ even for renormalizable models.

Issue only appears in FI

If a stable particle is exchanged in the t-channel, σ diverges as the particle becomes on-shell.

Issue appears both in FI and in FO

Both problems appear due to the utilisation of zero-temperature, in-vacuum QFT. Physically, they are *ficticious*.

Issues with *t*-channels : the problems

Although in principle quite straightforward, processes involving particle exchange in the *t*-channel may present some peculiarities :

Spin-1 particle exchange leads to constant σ at high temperatures $\rightarrow Y_{\text{DM}} \sim T_{\text{R}}$ even for renormalizable models.

Issue only appears in FI

If a stable particle is exchanged in the t-channel, σ diverges as the particle becomes on-shell.

Issue appears both in FI and in FO

Both problems appear due to the utilisation of zero-temperature, in-vacuum QFT. Physically, they are *ficticious*.

In particular, *in a medium*, at finite temperature :

• The vector mass receives a *T*-dependent contribution that scales as $M^2 \sim T^2$.

 \cdot Every particle (even a stable one) has a finite absorption probability ("width").

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs.

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs. Matrix elements calculated at *tree-level*

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Observation : consider $e^+ e \rightarrow \nu_e \overline{\nu_e}$ and compute the integrated cross-section with a cut *c* on the scattering angle

$$\sigma(\sqrt{s}, M_W, c) = 4\hat{\sigma}_{e\nu_e} \left(\frac{1}{2\mu^2 + c} + \log\left(\frac{2\mu^2 + c}{2}\right) + \mu^2 \log\left(\frac{2\mu^2 + c}{2}\right) + 1 - c + \frac{c^2}{4(-2+c-2\mu^2)} + \frac{c(c-4)}{4(c+2\mu^2)} - (1+\mu^2)\log\left(1+\mu^2 - c/2\right)\right)$$

Where $\mu^2 = M_W^2/s$, $\hat{\sigma}_{e\nu_e} = \pi \alpha^2/(8s_W^4s)$ and $\{\mu, c\}$ enter both singularities through the same combination $2\mu^2 + c$

The effect of a *T*-dependent mass can be captured by a zero-temperature calculation with a *T*-dependent cut on the scattering angle (or the p_T).

In practice: user-defined $p_{\rm T}$ cuts for all relevant particles

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs. Matrix elements calculated at *tree-level*

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Observation : consider $e^+ e \rightarrow \nu_e \nu_e$ and compute the integrated cross-section with a cut *c* on the scattering angle

$$\sigma(\sqrt{s}, M_W, c) = 4\hat{\sigma}_{e\nu_e} \left(\frac{1}{2\mu^2 + c} + \log\left(\frac{2\mu^2 + c}{2}\right) + \mu^2 \log\left(\frac{2\mu^2 + c}{2}\right) + 1 - c + \frac{c^2}{4(-2+c-2\mu^2)} + \frac{c(c-4)}{4(c+2\mu^2)} - (1+\mu^2)\log\left(1+\mu^2 - c/2\right)\right)$$

Where $\mu^2 = M_W^2/s$, $\hat{\sigma}_{e\nu_e} = \pi \alpha^2/(8s_W^4s)$ and $\{\mu, c\}$ enter both singularities through the same combination $2\mu^2 + c$

The effect of a *T*-dependent mass can be captured by a zero-temperature calculation with a *T*-dependent cut on the scattering angle (or the p_T).

In practice: user-defined $p_{\rm T}$ cuts for all relevant particles

For stable particles: introduce a small width \sim M/100 for *t*-channel particles.

Andreas Goudelis