Études de la lumière diffusée dans Virgo

My internship at LAPP on Virgo under the supervision of Romain Gouaty

APP

Augustin Demagny

28/11/2024

Gravitation and space-time

ESA, C. Carreau – ESA Standard Licence

Newton, 1687

Einstein, 1915

Gravitational wave (GW)

- Space-time deformations
- 2 polarisations (+, x)
- v = c
- Amplitude: $A \propto \frac{1}{D}$

Gravitational Wave Illustration Credit : Swinburne Astronomy Productions

THE SPECTRUM OF GRAVITATIONAL WAVES

Detection principle

How a gravitational-wave detector works

LIGO-Virgo-Kagra collaboration

Scientific results : Virgo/LIGO

- 171 gravitational waves detected
- Virgo's sensitivity improves with each campaign

Duration and cumulative number of detections of LIGO/Virgo observations

Coupling transfer functions

Different coupling types: different effects on sensitivity

Phase noise: alters detector measurement by interference

Couplage de la lumière diffusée

Vibration of benches

Shaking up optical benches

Taking data

13/17

Fit between projection and data

frequencies (Hz)

14/17

Projection computation results

Effect of backscattering on sensitivity

Thank you !

Any questions ?