Prospectives du LPC 2025

Acoustic panel

Detection of Very High Energy Neutrinos

Participants

- Ernst-Jan Buis is a Physicist at TNO in Delft, is a member of km3net, and responsible for the system engineer. He developed over the past years an expertise for the acoustic detection of cosmic neutrino.
- Yohann Brelet is an Engineer of the lab, working on instrumentation with past experiences in optical devices.
- Sylvain Girard is an Assitant Professor at the Ensicaen making his research in the cimap lab. His research interests are mainly focused on Solid-state lasers, Fibre lasers, Optical Sensors, and Non linear optics.

- SoLid :
 - 1.6 m³
 - 12800 cubes
 - 3200 MPPC

- KM3NeT : - ORCA : - 6 700 000 m³ = 0.0067 km³ - 2 070 DOMs - 64170 PMTs - ARCA : - 1 km³ - 4 140 DOMs - 128340 PMTs

Acoustic signal

- Signal generation
- Topology
- Frequencies and sensibilities to detect acoustic signal

Fiber-sensor

- How it works
- The multi-sensors

Fiber-Sensor as Acoustic detector

• Development at TNO

Mettre en œuvre des fibres photoniques creuses en configuration interférométrique (ou non ?) pour la détection d'ondes de pression mécaniques (domaine acoustique) de très faibles amplitudes, signature acoustique de l'interaction des neutrinos (> 100 PeV) dans l'océan profond.

Implementing hollow core photonic fibers (HCF) in interferometric configuration (or not?) for the detection of mechanical pressure waves (acoustic domain) of very low amplitudes, acoustic signature of neutrinos (> 100 PeV) interaction into the deep sea.

Some very recent litterature on the proof-of-principle

Detection of acoustic pressure with hollow-core photonic bandgap fiber

Meng Pang and Wei Jin

Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong, China *Corresponding author: <u>eewjin@polyu.edu.hk</u>

2D diaphragm nanoparticles/flakes in a Fabry-Pérot configuration

High-sensitivity fiber-tip acoustic sensor with ultrathin gold diaphragm

YUANBIAO TONG,¹ CHENXINYU PAN,¹ ZHIYONG LI,^{1,2,6} [©] HONGBO CHEN,¹ DONGSHENG XUE,³ LIN CHENG,⁴ YUQI ZHEN,¹ TONG ZHANG,⁵ YANG GAO,⁵ LEI ZHANG,¹ XIN GUO,^{1,2} LIMIN TONG,¹ AND PAN WANG^{1,2,7} [©]

Studying New-Generation Hollow-Core Fibers for Acousto-Optic Sensors

Ricardo E da Silva, David J Webb, Jonas H Osório, Marcos a R Franco, Fetah Benabid, Frédéric Gérôme, Cristiano M B Cordeiro

▶ To cite this version:

Ricardo E da Silva, David J Webb, Jonas H Osório, Marcos a R Franco, Fetah Benabid, et al.. Studying New-Generation Hollow-Core Fibers for Acousto-Quici Sensors, LATIN AMERICAN WORKSHOP ON OPTICAL FIBER SENSORS (LAWOFS 2024), May 2024, Campinas (Brazil), Brazil. hal-04625510

Fig. 1. Schematic diagram and working principle of EFPI-based fiber-tip acoustic sensor. (a) Schematic of an EFPI-based fiber-tip acoustic sensor with an ultrathin gold diaphragm. (b) Deduction block of the state sensor with an ultrathin gold diaphragm.

Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel

Yongqin Yu^{1,2} · Xue Chen^{1,2} · Quandong Huang^{1,2} · Chenlin Du^{1,2} · Shuangchen Ruan^{1,2} · Huifeng Wei³

FIGURE 2.2 – (a) Image par microscopie électronique à balayage d'une HC-PCF (b) maille élémentaire de la gaine microstructurée à maille hexagonale [66], (c) définition de Λ et d du cristal d'une HC-PCF [74].

Thèse D. Ferachou (2012)

Da Silva et al. (2024)

Hollow core fiber (HCF) with ad hoc pattern (such as Kagomé, ...)?

Because, compared with standard silica fibers => more sensitive to mechanical constraint (Young's Modulus is lower), but is it (highly) sensitive enough to detect a pressure wave magnitude on the mPa, even μ Pa, order?

All-fiber acousto-optic interferometric device?

- Which gas: N2, Ar, Ne, Xe, <u>Air</u>, ...?
 Which laser power? Pulsed?
 Which gas pressure?

. . .

• A (very) costly solution? But flexible!

Potential collaborations: NIKHEF, TNO, XLIM, LAAS, CEMES, FOTON, LAUM, LMA, CIMAP, CRISMAT,

```
Local ETPs (@LPC): Instru' + Meca + \muElec => 2
```

Need for elaboration and characterization of HC fiber

Here, acoustic sensors would thus be based on the interferometric detection of pressureinduced phase shift of light propagating inside an optical fiber (air-silica honeycomb)

Miscellaneous and other (challenging) hints to explore:

- Phase-matching water-silice(polymer) interface
- Sea salinity OK with fiber
- The etched fiber was then coated with Parylene C
- Femtosecond structuring micromachining
- Acoustic/Optic Metamaterials
- MEMS hydrophone
- Wave-mixing (four, two, waves)
- MOEMS (MEMS + Optics)
- Opaques Scintillators (embedded)
- Photonic integrated Microresonator
- 2D membrane (2D material) => But must manage the deep-sea pressure! (biomimetism)
- Acoustic valley edge states (valleytronics equivalent)
- Acoustic Topological Chiral Metamaterials/Insulators (confine, guide, amplify, select, absorb, modulation, ...)
- •

Could be a mix of some of them + use of Additive Plastronics

Why? To gain in high-sensitivity, decrease propagation losses, sturdy,

		7					
IOP Publishing Mater. Res. Express 5 (2018) 105801 https://doi.org/10.1088/2033-1591/aadbc2 Materials Research Express			JOURNAL OF APPLIED PHYSICS 123, 091713 (2018)		CrossMark ector for spatates		
		Acoustic valley edge states in a graphene-like resonator system					
ConstMark PAPER Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior			Yahui Yang, ¹ Zhaoju Yang, ^{1,a)} and Baile Zhang ^{1,2,a)} ¹ Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 ² Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371				
14 August 2018 Salman Ebrahimi-Nejad I and Majid Kheybari I 21 August 2018 Vehicle Dynamical Systems Research Lab, School of Automotive Engineering, Iran University of Science and Technolog Nove Persume 21 August 2018 E-mail: ebrahimincjad@iust.ac.ir		lovel Opaque Scintillator for Neutrino Detection		; accepted 14	; accepted 14 January 2018; published online 30 January 2018)		
Keywords: acoustic metamaterial, honeycomb, cubic, resonator, noise attenuation, stop band behavior, tr	C. Buck, B. C.	aramlich and S. Schoppmann		EVIEW		National Science Revie 10: nwac246, 20 https://doi.org/10.1093/nsr/nwac2 Advance access publication 3 November 20	
sensors	Max-Planck Saupfercheck E-mail: cht	ıstitut für Kernphysik, veg 1, 69117 Heidelberg, Germany stian.buck@mpi-hd.mpg.de			PHYSICS		
Article MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration		ABSTRACT: There is rising interest in organic scintillators with low scattering length for future neutrino detectors. Therefore, a new scintillator system was developed based on admixtures of paraffin wax in linear alkyl benzene. The transparency and viscosity of this gel-like material can be tuned by temperature adjustment. Whereas it is a colorless transparent liquid at temperatures around			Underwater acoustic metamaterials Ergian Dong ^{1,2} , Peizheng Cao ^{1,2} , Jinhu Zhang ^{1,2} , Sai Zhang ⁴ , Nicholas X, Fang ^{(0)3,*,†} and Yu Zhang ^{1,2,*}		
Fabio Alves *, Jaehyun Park, Leland McCarty, Renato Rabelo and Gamani Karunasiri Naval Postgraduate School, Monterey, CA 93943, USA; jaebbong85@gmail.com (J.P.); leland.mccarty@gmail.com (L.M.); rcrabelo.br@nps.edu (R.R.); gkarunas@nps.edu (G.K.) * Correspondence: fdalves@nps.edu; Tel.: +1-831-656-3884	10. Metamaterial rithms The use of metamaterial an unprecedented cor Most of the devices d nanostructures whose cylinders or cuboids. algorithms) and relies	devices designed with optimizat als greatly expands the toolbox availab trol over the optical properties of th iscussed in the previous sections are unit cells are realized with simple Their design is often performed cor on the possibility to develop effective	ion and machine learning algo- le to the photonic designer, allowing e materials in integrated photonics. based on periodic or semi-periodic geometrical shapes, for example ventionally (i.e., without advanced models describing light propagation	cintillator			
st International Workshop on Materials Science and Mechanical Engineering IOP Public OP Conf. Series: Materials Science and Engineering 281 (2017) 012002 doi:10.1088/1757-899X/281/1/01	in the metamaterial, introducing non-conve Recently, this strategy	a the metamaterial, as we discussed in Section 2. Removing constraints on periodicity or atroducing non-conventional shapes for the unit cells can substantially expand design capabilities. Recently, this strategy has been used to demonstrate increasingly compact structures and multi- Communication Acoustic Optical Fiber Sensor Based on Graphene Oxide Membrane b the ://doi.or			Appl. Math. MechEngl. Ed., 45(7), 1119–1138 (2024) PLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION) i.org/10.1007/s10483-024-3162-8		
MEMS-based Optic Fiber Fabry-Perot Sensor for	Catarina S. Monteiro ^{1,2,+(}	Maria Raposo ³ ⁽⁶⁾ , Paulo A. Ribeiro ³ ⁽⁶⁾ , Susan ¹ Institute for Systems and Computer Engineering. Tothen Physics and Astronomy Evally of Sciences, University 464-007 (Proto Loring Language and Sciences, University 464-007 (Proto Loring Language and Sciences, University ² Science of Bringereing, University of York, B. De Robe ³ Centro of Bringe Level Science and Sciences, Carlo Centro of Bringer (PA R.) ⁴ Control Science (Computer Sciences), Computer ⁴ Control Science (Computer Sciences), Computer ⁴ Control Science (Computer Sciences), Computer ⁴ Controporties (Computer Sciences), Computer Sciences, Computer Scienc	O. Silva ¹ ® and Orlando Frazão ^{1,4} ® logy and Science (INESC TEC) and Department of 4 Portos, Rasa do Campo Alegre 667, to Fraise, 2020-465 Portos, Portugal portanemito de Fraise, Realidade de Celencias anica, Prorugal, miniteix ani y 10 (XE); b, ordrazofilmencence pri (OE) aphene oxide membrane was developed with	opology optimiz	ation of chiral metamaterials underwater sound insulation	with application to *	
J Xia ^{1,2} , F Y Wang ¹ , H Luo ¹ , Y M Hu ¹ and S D Xiong ^{1*}		the aim to achieve a faster and simpler fabrication pri- based acoustic sensors. In addition, the proposed sen- chemical hazards and environmental impacts. The around 26 µm, showed a constant reflected signal am range. The sensor tatiand a videband operation ran signal-to-noise ratio (SNR) of 32.7 dB at 25 kHz. Thi to 90 °C was also studied. Moreover, the proposed si wideband microphone or to be applied in more comp	scalar when compared to similar graphene- or was fabricated using methods that reduce developed sensor, with an optical cavity of plitude of 8 ± 0.1 dB for 100 nm wavelength between 21 and 100 kHz, with a maximum stability and sensitivity to temperatures up resor offers the possibility to be applied as a ex systems for structural analysis or imaging.	Chau J	o WANG, Honggang ZHAO [†] , Yang V ie ZHONG, Dianlong YU, Jihong W	VANG, EN	
	Check for	Keywords: Fabry-Pérot interferometer; fiber optic ser	sor; acoustic sensor	Laboratory c	a science and recinology on integrated Lo	gistics Support,	

Where is the next place to fish neutrinos ?

• Noise and wave propagation

Where to put some effort ?

- Simulation (Shower and acoustic, detector)
- Sensors
- Acquisition
- Mechanical implementation