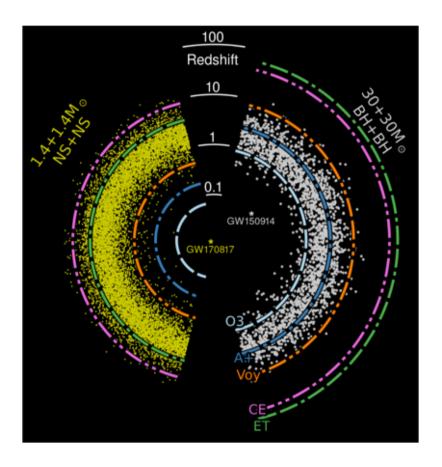
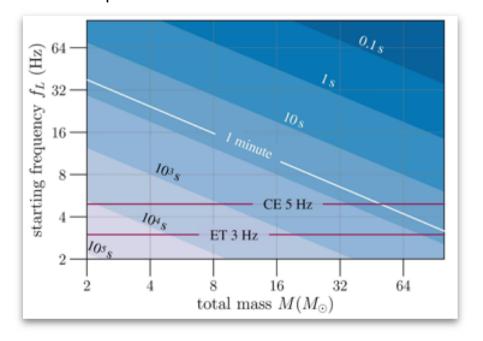
Status of Division 10 Data analysis Platform

ET-France, CAEN, 10/10/2024


Organization

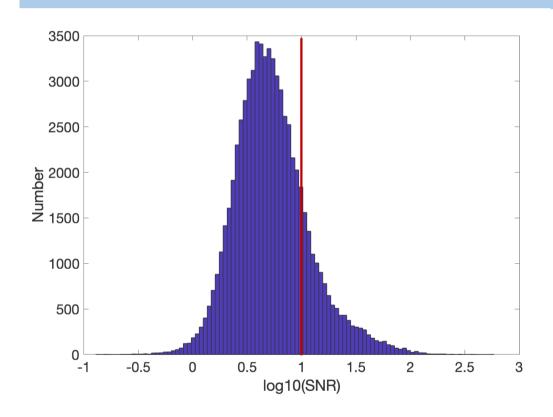
- 4 chairs: Elena Cuoco, Gianluca Guidi, Tania Regimbau, Anuradha Samajdar
- Liaison persons with other divisions and EIB (John Veitch)
- 160 subscriptions to mail.ego-gw.it/mailman/listinfo/et-osb-DA
- Bi-monthly meetings
- Wiki page: https://wiki.et-gw.eu/OSB/DataAnalysisPlatform

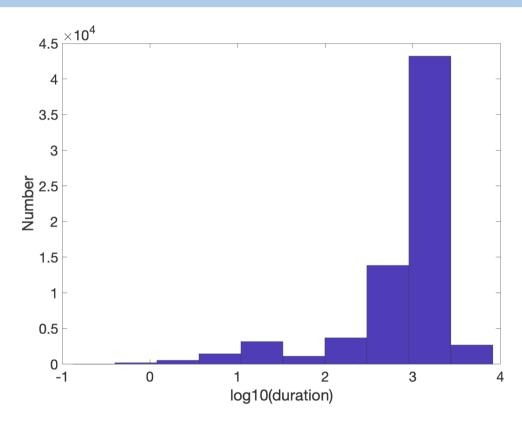

Goal of division 10

- Prepare the analysis and parameter estimation with 3G data (methods and software) in order to exploit the full potential of 3G detectors.
- New challenges: signal regime, long waveforms, overlapping events, new sources.
- New geometry (null stream, correlated noise), new network (+CE).
- New computing technologies (GPU/TPU/FPGA, cloud computing) and algorithms (classical development, IA, Quantum algorithm).

Horizon beyond the peak of the star formation rate

Long duration waveforms can dramatically increase the computational cost + Impact of Earth rotation

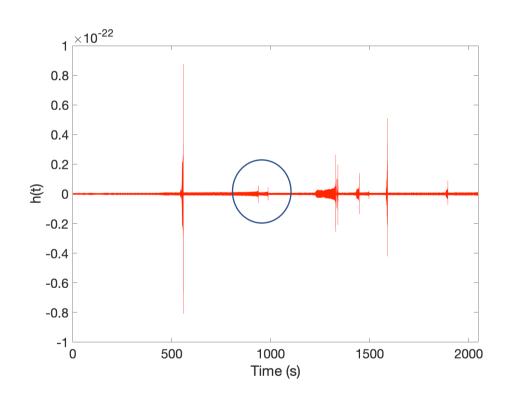


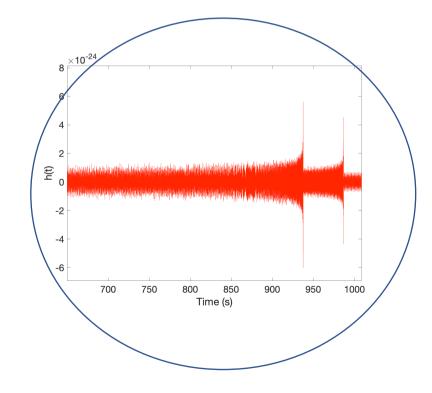

Credit Cosmic Explorer

Mock data challenges

- Common training simulated data sets.
- Test, develop, optimize, compare data analysis and parameter estimation techniques, adapted to the the new challenges/requirements of XG detectors.
- Science potential with ET or XG.
- Requirements for computing infrastructure.
- MDC1 ongoing with only CBCs
- MDC2 brainstorming (glitches, correlated noise, bursts, CWs, cosmological sources, calibration errors, missing data...?)

Some statistcs





SNR>8: 11551 BNS, 537 BHNS, 6119 BBH SNR>12: 4048 BNS, 238 BHNS, 5228 BBH

Example of the GW data

28 signals with SNR>6, largest at SNR=85 BNSs merging at 937s and 986s, that are both long duration and overlapping

Challenges

Beginner

• Recovery of high-SNR signals within given time windows SNR = 597, 386, 383 (BNS), 374, 343, 306

Expert

- Parameter estimation of ultra-high SNR BBH signals
- Long duration binary neutron stars
- Overlapping signals

Current activities

- Run of existing pipelines ongoing on MDC1 (PyCBC, MBTA, Gwastro, PySTAMPAS, PyGWB).
- Many presentations at the div 10 f2f in Maastricht about new techniques to deal with long waveforms and overlapping signals.
- Coordination with EIB

Current activities

The following is a table with the details of groups working on ET DA within obs-da div 10. Please indicate if you are running on MDC1 in the remarks:

Group	Expertise level	Brief explanation of aims	Software used	Contact person	Remarks	
Utrecht University	Experts	Parameter estimation (automated classifier for telling number of overlapped signals), joint parameter estimation,	PyCBC, other software	Bhooshan Gadre, Thibeau Wouters,	MDC1	
		Searches (template bank versus global optimisers, null stream background), Machine-learning	developed in UU	Harsh Narola, Justin Janquart, Anuradha Samajdar,		
ICCUB	Medium	PE, searches	cWB, <u>PyCBC</u>	Tomas Andrade, Pablo barneo,	MDC1	
				Ruxandra Bondarescu		
University of Geneva	Beginners	CBC signals, early-inspiral regime	Not final, machine-learning related	Carlos Moreno Martinez, Sarah Baimukhametova,	MDC1	
				Steven Schramm		
IJCLab	Experts	Test existing searches based on PySTAMPAS and PyCBC ; develop template banks for CBC searches	PySTAMPAS, PyCBC	Tito Dal Canton	MDC1	
Annecy, Urbino	Experts	Test existing searches based on MBTA	MBTA, pycbc	Buskulic, Grimaud, Fabrizi, Guidi	MDC1	
RWTH Aachen	Medium	Parameter estimation (Fast machine learning based posterior reconstruction)	LAL, pytorch, own developed software	Markus Bachlechner, Tobias Reike, Johannes Erdmann, Achim Stahl	MDC1	
APC-Paris	Experts	BNS parameter estimation (DNN based Hamiltonian Monte Carlo)	Bilby, pytorch, own developed software	Ed Porter, Jules Perret	MDC1	
Ewha Womans University (Korea)	Beginners	CBC signal search pipeline review/test with matched filtering,	LAL, pyCBC	Sumi Lee, Seohyun Park, Chunglee Kim		
		(plan) PE focusing on mass distributions of the detected sample (in relation with div3)	(plan) Bilby			
University of Pisa	Medium	Detection, PE and Early Warning for high SNR sources with Deep Learning	Pytorch, own developed software	Federico De Santi, Lucia Papalini, Massimiliano Razzano	MDC1	

Blue book chapters

1	Inti	roduction	2		
2	Challenges 2.1 Long duration Compact Binary Coalescence signals 2.2 Overlapping signals				
	2.3 2.4	Noise Background estimation	9		
3	Inn	ovative methods: machine learning applications	9		
4	Sign	nal detection method	11		
	4.1	Data analysis methods for Compact Binary Coalescences 4.1.1 Machine learning methods for CBC detection 4.1.2 Computational Requirements	12 12 13		
	4.2	Data analysis for Gravitational Wave Background 4.2.1 Computational Requirements	14 15 15		
	4.3	Data analysis for Continuous Wave searches	16 17 18		
	4.4	Data analysis for Burst signals	18 19 20		
5	Par	ameter estimation methods	2 1		
	5.1	Analysis of overlapping signals	22		
	5.2	Innovative methods for faster inference	23		
		5.2.1 Relative binning method			
		5.2.2 Machine learning for parameter estimation			
	5.3	Computational Requirements	3.		

6	Pec	uliarit	ties of a triangular ET				32
	6.1 Null stream						 32
		6.1.1	Noise estimation				 32
		6.1.2	Glitch Identification				 35
		6.1.3	Self-calibration				 36
	6.2	Corre	elated noise				 38
7	Sim	ulatio	ons and Mock Data Challenges				40
	7.1	Descri	ription of the first MDC				 40
		7.1.1	Simulation of the Noise				 40
		7.1.2	Simulation of the GW signal				 41
		7.1.3	The GW background				 42
8	Cor	nmona	alities with other divisions				42
0	Cor	alusio					16