## Hyper-Kamiokande status



## **Denis Carabadjac**

dcarabadjac@llr.in2p3.fr

## **IRN meeting** 10.10.2024











- Hyper-Kamiokande is the third-generation of Water Cherenkov experiment in Japan
- Broad physics program
- Inherits successful approaches from T2K and SK
- x8.4 expansion in fiducial volume and x2.6 increase in accelerator power
- Many improvements to keep systematics under control

### Hyper-K has an extensive physics program



## **Physics potential:**

Proton decay search

## Proton decay search





- Hyper-K provides world leading sensitivity for proton decay due to large mass and free protons in target material (H<sub>2</sub>0)
- $3\sigma$  discovery potential half-life of  $10^{35}$  years for  $p \rightarrow e^+ + \pi^0$ and  $3 \times 10^{34}$  years for  $p \rightarrow \bar{\nu} + K^+$  after 20 years





Carabadjac Denis (LLR/CEA)

## **Physics potential:**

## Astrophysics neutrino

## Supernovae neutrino



### Direct SN $\nu$

Tens of thousand events (~from centre of Milky Way)

+ precise timing information

- accurate supernovae models tests
- mass ordering measurement
- absolute mass of neutrinos sensitivity (0.5 to 1.3 eV)



| Interaction       | Integrated number<br>of events |       |
|-------------------|--------------------------------|-------|
| detection         | NO                             | IO    |
| $\bar{\nu}_e + p$ | 57836                          | 74852 |
| $\nu + e^{-}$     | 3615                           | 3580  |

10 kpc supernova using the Livermore model

### DSNB

• 4.2 (5.7)  $\sigma$  sign. after 10 (20) years\*

Total number without event selection efficiency



\* Assumed the flux prediction from model described here arXiv:astro-ph/0202450 and  $E_{\nu} \in [16; 30]$  MeV after spallation bkg reduction

Carabadjac Denis (LLR/CEA)

## **Physics potential:**

## Beam and atmosph. neutrino

## Long-baseline program: Sensitivity

Hyper-K

- New extensive LBL sensitivity studies have been updated last year
- All analysis have been performed by French PhD students: Claire Dalmazzone (LPNHE) and myself (LLR, IRFU)
- The paper on LBL sensitivity studies is under preparation on behalf of the HK collaboration
- Based on T2K analysis (Neutrino2020 version):
  - Hyper  $K MC = Super K MC \times Reweights$  (flux, detector, POT)
  - Event selections, fitting strategy and statistical treatment adopted from T2K
  - Systematics parametrisation adopted from T2K
- Three systematics models considered:
  - Statistics only no systematics
  - T2K 2020 syst. T2K constraints
  - Improved syst. expected improved constraints from IWCD, upgraded ND280 measurements and high statistics
- MO assumed to be known



10

#### Long-baseline experiment provides unique possibility for precise CP-V measurement

- Allows direct CP-V search having well-controlled v and  $\bar{v}$  beams ٠
- 5σ sensitivity to CP-V discovery for 62% of true  $\delta_{CP}$  values in 10 years (improved syst.)
- After 2.5 years 50 CP-V discovery for maximal CP-V



Carabadjac Denis (LLR/CEA)

## Long-baseline program: $\delta_{CP}$ precision

Long-baseline experiment provides unique possibility for precise  $\delta_{CP}$  measurement

- $5^{\circ} 22^{\circ}$  for  $1\sigma$  precision  $\delta_{CP}$  measurement
- Depends on true value of  $\delta_{CP}$  and highly on  $\sigma(v_e)/\sigma(\bar{v}_e)$
- Small impact from reactor constraint (1:3  $\nu$ :  $\bar{\nu}$  allows to split the degeneracy with  $\sin^2 \theta_{13}$ )



True normal ordering (known), HK 10 Years  $(2.7 \times 10^{22} \text{ POT } 1.3 \text{ v}.\overline{v})$  $\sin^2\theta_{13}=0.0218\pm0.0007$ ,  $\sin^2\theta_{23}=0.528$ ,  $\Delta m_{32}^2=2.509\times 10^{-3} \text{ eV}^2/\text{c}^4$ 



True normal ordering (known), 10 years ( $2.7 \times 10^{22}$  POT 1:3 v: $\overline{v}$ ) sin<sup>2</sup> $\theta_{13}$ =0.0218±0.0007, sin<sup>2</sup> $\theta_{23}$ =0.528,  $\Delta m_{32}^2$ =2.509×10<sup>-3</sup>eV<sup>2</sup>/c<sup>4</sup>,  $\delta_{CP}$ =-1.601

Carabadjac Denis (LLR/CEA)

## Long-baseline program: atm. parameters



Statistics only

Improved syst. ( $v_{e}/\overline{v}_{e}$  xsec. error 2.7%)

T2K 2020 syst. (v<sub>e</sub>/v<sub>e</sub> xsec. error 4.9%)

<u>10 HK years</u>

#### Long-baseline experiment provides precise measurements on atmospheric parameters

- $5\sigma$  wrong octant rejection for  $\sin^2 \theta_{23} < 0.45$  and  $\sin^2 \theta_{23} > 0.57$
- ~0.5 3.5% res. for  $\sin^2 \theta_{23}$  (depending on true  $\sin^2 \theta_{23}$ )
- ~0.5% res. for  $\Delta m_{32}^2$



## Beam + atmospherics

Atm

HK 10 years (2.70E22 POT 1:3  $v:\overline{v}$ )

Beam

18

- Previous slides assumed known mass ordering
- MO unknown  $\rightarrow$  degeneracies can degrade sensitivity to  $\delta_{CP}$  and • octant (depending on true MO and  $\delta_{CP}$ )

 $MO - \delta_{CP}$  degeneracy

breaking

New Beam+Atm analysis is in progress basing on T2K+SK



Atm. Atm. + only Beam 2.2 σ **3.8** *σ* **4.9** *σ* **6.2** *σ* 2.2 σ 6.2 *σ* **1.6** *σ* **3.6** *σ* 

Recovery of  $\delta_{CP}$  sensitivity, boosts

octant and MO sensitivity



vper-



## **Experimental setup:**

## Hyper-Kamiokande detectors

- Hyper-Kamiokande is third generation of Water Cherenkov detector in Japan
- To meet the physics goals mentioned above numerous improvements are incorporated:
- Increased Detector Volume: 188.4 kton FV (x8.4 of SK FV)
- Improved photo detector system (20k 50 cm PMT, ~1k mPMT)
- Improved electronics and readout system
- New calibration methods

#### Hyper-K PMT Hamamatsu R12860

- Box-and-line dynode
- ightarrow QE = 35 − 40%
  - x2 photo-detection eff.
    - x2 timing resolution
- x2 charge resolution

wrt to SK

#### Details in backup

16 m  $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$ 

15

## Near Detector complex





- Off-axis near detector (2.5°)
- Constrains flux and x-sec syst. in the oscillation analysis
- Upgraded in 2024, with successful operation demonstrated in the T2K experiment.



- Additional "near" detector ~850m from target
- 600 ton Water Cherenkov detector instrumented with mPMTs
- Movable detector covering off-axis angles  $1.5^{\circ} 4^{\circ}$

Same target material and 4π acceptance as FD
Probe different neutrino energy spectra

Crucial reduction of systematics uncertainties

Carabadjac Denis (LLR/CEA)

October 10th, 2024

## Current status

## Current status

Hyper-K

- Cavern excavation and PMT delivery&tests are ongoing
- Construction phase extended by 6 months, mainly due to changes to the top structure of the detector
- End of detector construction and start water filling May 2027
- Start of operations Dec. 2027



Note: JFY=Japanese Fiscal Year starts on April 1st

## Current status: Far detector





## **Current status: Electronics**

- Electronics will be underwater, in pressure vessels •
- The development of individual components is nearly complete (digitiser, • LV, HV, timing/synchronisation, calibrator etc)
- Fully assembled module tests in the water are on-going at CERN and • Kamioka
- Calibration and assembly of mass produced components from Summer 2025 at CERN



#### 10-unit test @ CERN







## French contribution

#### October 10th, 2024

#### 22

#### French contribution

### Hardware

- Contribution and expertise to the T2K Near Detector complex • which will become a part of Hyper-Kamiokande experiment
  - ND280 HA-TPC and SFGD maintenance  $\bigcirc$
  - Discussions started for further upgrade ND280++ Ο

| Contribution                                | Purpose                                                                                                                                       | Current status                                                                                                                                                  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The time generation and distribution system | <ul> <li>Time synchronization of all detector components</li> <li>Global timing reference</li> </ul>                                          | <ul> <li>Final prototype is almost completed</li> <li>The time distribution module mass production should start in early 2025 and finish by end 2025</li> </ul> |  |
| Electronics testbench                       | <ul> <li>Perform precise calibration of ~1800<br/>digitisers at CERN</li> <li>Qualify underwater unit before<br/>shipment to Japan</li> </ul> | <ul> <li>Tests at French testbench almost<br/>finalised</li> <li>Selection of the waveform generator<br/>(critical step) has been completed</li> </ul>          |  |
| Vertical slice tests                        | Validation of all subsystems     compatibility in electronic chain                                                                            | <ul> <li>Tests are ongoing at CERN and<br/>Kamioka</li> </ul>                                                                                                   |  |

Direct contribution to the HK far detector electronics •







- Large statistics will allow high precisions studies of the oscillation of atmospheric, accelerator and solar neutrinos, as well as searches for new physics (proton decay in particular)
- For  $\delta_{CP}$  favoured from T2K data, **CP-V discovery** in less than 3 years
- Can exclude CP conservation at  $5\sigma$  in neutrino oscillations for 62% of true  $\delta_{CP}$  values in 10 years of operation
- Detector construction and PMTs delivery&tests on-going, excavation of the far detector cavern will be completed by the end of 2024
- French institutes are actively contributing to various aspects of Hyper-K: hardware for FD, maintance of ND, physics analysis, software development and computing
- Start of operation planned for **December 2027**

# BACKUP

## Long-baseline program





## Proton decay search

#### Main channels









Search for data excess around 236 MeV/c of  $\mu$  + **Michel electron** 

Super-Kamiokande IV tun 999999 Sub 0 Event 236 wall: 1076.4 cm mass = 155.2 MeV/c\*  $\pi^+$ 

#### tesid(ns)

 $p \to K^+ + \bar{\nu}$ 



 $K \to \pi^0 \pi^+$  (21%)



Search for 206 MeV/c  $\pi^0$ + Michel electron

Carabadjac Denis (LLR/CEA)

October 10th, 2024

 $\pi^0$ 

vper-

## Solar neutrino





Hyper-K can shed light on remaining questions on solar neutrino oscillations

- $1.5\sigma$  tension between KamLAND ( $\bar{v}_e$ ) and solar global fit ( $v_e$ ) (CPT invariance? BSM physics?)
- 5σ significance of a non-zero day/night asymmetry after 10 years
- $2\sigma$  day/night sensitivity expected for the difference in  $v_e$  /  $\bar{v}_e$  osc. in 20 yrs.
- >  $3\sigma$  sensitivity to upturn [3-7] MeV region after 10 HK yrs. ( $E_{th} = 4.5$ )
- Sensitive to sterile neutrino, NSI



Carabadjac Denis (LLR/CEA)



• One of other goals of solar neutrino program is to detect hep neutrinos



## Proton decay search

### Why water is used for proton decay search?

- Easy to construct larger detector.
- □ Much cheaper than iron or gas.
- □ You can find large water tank everywhere (common technology).
- High efficiency and low uncertainty.
- $H_20$  has two hydrogens which are not affected by nuclear effect . They are regarded as "free" proton.
- Free protons contribute high selection efficiency and low uncertainty.



## Long-baseline program: CP-violation







- >  $3\sigma$  mass hierarchy sensitivity for  $\sin^2 \theta_{23} > 0.53$
- >  $3\sigma \sin^2 \theta_{23}$  octant sensitivity for  $\sin^2 \theta_{23} < 0.43$  and  $\sin^2 \theta_{23} > 0.6$

Sensitivity studies based on SK analysis:

- Scaled SK MC
- No improvement of Super-K systematics assumed

#### Mass ordering sensitivity





Carabadjac Denis (LLR/CEA)

#### October 10th, 2024

## Hyper-Kamiokande detector: photo-detection system



2.5

Charge [p.e]

R12860

SK PMT

1.5

R12860

SK PMT

10

0.5

0

-0.5



Improved model compared to SK





15

Time [nsec]



#### Original power projection in MR Upgrade Plan



#### Beam Power = Energy $(30 \text{GeV}) \times 1/\text{T}_{\text{rep}}$ (pulse/s) × # of protons (/pulse)

| JFY2021  | 515 kW   | 2.48 s  | $2.66 \times 10^{14} \text{ ppp}$ |
|----------|----------|---------|-----------------------------------|
| JFY 202* | > 940 kW | <1.36 s | $2.66 \times 10^{14} \text{ ppp}$ |

- Consecutive demonstration of 760 kW in Dec. 2023
- 800 kW reached in Summer 2024
- 1.3 MW by JFY2028  $_{\odot}$  "1.36  $\rightarrow$  1.16 s cycle" & "More protons/pulse"

| /home/daqkun/workspac          | e/develop/jnu_bean 🛞 🛞 🛞 | L T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      | lu lu                                   | n = 2024                                                 |
|--------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------------------------|
| MR Run#                        | 91                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | Ju                                      |                                                          |
| MR Shot#                       | 2448782                  | /home/daqkun/workspace/develop/jnu_beam_smn/slowmonitor/epics/gui/jnu_edm/trunk/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share/edition/content/share |                                        | edm/trunk/share/ed 💿 💿 🙁                |                                                          |
| (20                            | 024/06/14 09:33:58)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | 9 [kW]                                  |                                                          |
| NU Kun#                        | 910576                   | (2024/00/140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3:33:30)                              |                                         |                                                          |
| Event#                         | 61240                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MR DCCT_073_<br>NU CT01 measu          | 1 measurement : 2.265<br>rement : 2.262 | 57e+14 [protons per spill]<br>28e+14 [protons per spill] |
| Spill#                         | 8358153                  | Parameter values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                      | Prediction from par                     | ameter values :                                          |
| Deliv. p#<br>(this J-PARC run) | 3.88838e+20              | LI current:<br>MR micro pulse:<br>MR chop width:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.02 [mA]<br>400 [usec]<br>455 [nsec] | Expected PP<br>Expected PP              | PP: 2.1075e+14<br>B: 2.6343e+13                          |
| Deliv. p#<br>(2010/Jan/1~)     | 4.21035e+21              | MR thinning:<br>MR # of bunch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110/128<br>8                           | IIII Expected Powe                      | er: 783 [kW] !!!!                                        |

Carabadjac Denis (LLR/CEA)

## **Calibration methods overview**



## Calibration systems



#### Photogrammetry

- Cameras for precise PMT position determination
- Illumination from LED system innside mPMT



Total coverage = 436 %



#### Precise PMTs pre-calibration

• Make detailed measurement of responses prior to the installation for subset of the PMTs





#### Radioactive sources

- Measure detector response, PMT efficiency
- <sup>16</sup>*N* source ( $\beta\gamma$  source with well understood spectrum)
- NiCf source (uniform Cherenkov light )



## mPMTs

- Cross-calibration
- Disentangle PMT angular response and light traveling direction (granularity)
- Better separation of indirect photons (precise timing)
- LED source in 200 mPMT
- ➢ 300 nm for Raman scattering





## French contribution (plots)





DAQ



- Mass production of 50cm PMTs started in 2020
- Production suspended in 2022 due to higher than expected failure rate
- PMT delivery restarted in May 2023, with sampling test of delivered PMTs at Kamioka
- So far, in line to complete delivery of 20.5k by Sep. 2026
- For mPMT: design complete outside of LED part. Production not started yet.
   (19 3" PMTs)
- 3600 PMTs for OD will be produced

## French contribution

### Computing

- Make CC-IN2P3 a Tiers-1 site of HK experiment
  - Host HK database  $\bigcirc$
  - Discussions with collaboration are ongoing Ο

| Detector     | MC (HS06 CPU.h)    | MC Storage (TB) |
|--------------|--------------------|-----------------|
| INGRID       | 0.13M              | 7               |
| ND280        | $19.2\mathrm{M}$   | $2,\!250$       |
| IWCD         | 97M                | 52              |
| Far detector | 20M                | 500             |
| Total        | $136.33\mathrm{M}$ | $2,\!824$       |

## Software

- Oscillation analysis (beam neutrinos, joint beam+atm)
  - Porting T2K and SK tools and accommodating them for Hyper-K
  - Provide comprehensive osc. sensitivity results
  - Develop more robust systematic model
- Hyper-K events reconstruction
  - Porting SK standard algorithm
  - Develop ML approach
- DSNB
  - Phenomenological studies
  - Preparation of new sensitivity studies



