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Presentation of DUNE

Sanford Underground
Research Facility
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Goals

e (Charge parity violation phase
Neutrino mixing angles
Neutrino mass hierarchy
Search for proton decay
Study of supernovae neutrinos

Neutrino beam energy: 0.5 to 8 GeV
Near Detector at 575m from the source
Far Detector (FD) 1.5 km underground
4 LArTPCs modules of 17.5 kt each

See Alessandra’s talk
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DUNE Horizontal Drift

LArTPC — kinematic reconstruction of nu events simulated 2.5 GeV v,
Excellent (numu CC, nue CC, NC and potential for nutau) "
Excellent (e, mu, proton)

- trigger, 3D reconstruction
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Atmospheric neutrinos

Number of Events Distribution - Honda Solar Minimum, NuFIT 5.2 (NO), Local Fermi Gas

HONDA e Extra source of
neutrinos in addition to
beam

e Relevant — will operate
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without beam
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Atmospheric neutrinos characteristics

solar neutrinos
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Constant flux of multiple Wide energy range Come from every direction and go
flavors of neutrinos — from ~MeV to ~PeV through different matter densities

— different baselines/matter effects
— Complementarity with beam data
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e Fast oscillations at
low-E
e Expect DUNE to be
able to reconstruct
0.1 sub-GeV events
0.0 e Biggest challenge is
handling Fermi
motion as well as
-0.2 constraining the flux
and cross-section
systematics
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Sub-GeV Atmospheric Neutrinos
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Using the NuWro v event generator — Joint fit

Assuming ~15° angle resolution — CC—-1p0rm
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https://arxiv.org/abs/1904.02751



https://arxiv.org/abs/1904.02751

Physics with atmospherics : MH and 0,,,
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https://arxiv.org/pdf/2002.03005

Physics with atmospherics : sterile neutrinos
| | f. ] \ =
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Standard Model 0.9

e Big part of sterile neutrino effects are at high energy
— atmospherics are good sources to see that
e Seen as differences in expected number of events
R due to additional oscillation state
T e Important to properly reconstruct events (both

cos(6;)

M+ sterle 04 energy and angle) and tag neutrino flavors to
- 03 estimate this
3 02 e DUNE could be competitive with other experiments

for sterile mass < 1 eV?
e Containment effects will be challenging, plan is to
o Energy (GeV) 2 improve reco with MCS and ML

S/n2974 = O, Sin2924 = (. 03, Sin24934 = 005, Am274 =1 eV2 Camille Sironneau
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DUNE FD as an atmospheric neutrino detector

IceCube, KM3NeT

Hyper-Kamiokande

DUNE

Very high energy Accelerator LBL Accelerator LBL
astro-particle and atmospheric and atmospheric
physics and neutrino oscillation | neutrino oscillation
atmospheric

neutrinos

0(1) Mt 260 kt 40 kt

0(10° events/year) | O(10% events/year) | O(10% events/year)
Event classification | v flavor Low hadronic

into showers and
tracks

identification

thresholds, low
energy protons
visible

E > 0(1 GeV)

E > 0(1 MeV)

E > 0(1 MeV)

Camille Sironneau
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e Underground — shielding from
cosmogenic events

e Expect good control and knowledge
on detector systematic uncertainties

e DUNE — smaller so less statistics but
can solve event topologies and see
protons

e Expect good energy and direction
reconstruction in DUNE for both
multi-GeV and sub-GeV v

— challenge : software was built to

reconstruct beam events, need some tuning




Angular resolution

e Neutrino angle reconstruction is not a current central focus of beam analyses

0 M
e To do this for atmospherics, we need access to particle’'s 3-momentum, which requires : //
o particle direction Y 4
o particle kinetic energy LArTPCs should be good at this

o particle identification
e But some info is not available : momentum carried by neutrons, nuclear effects — Fermi

motion, nuclear interactions, etc...
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Energy resolution

10°3 _ CSDA Table

e Reco neutrino energy = lepton energy + hadronic
energy (sum of energy depositions)

e Fornumu (CC) events, longest track is selected as
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Henrique Souza, Pierre Granger
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Energy resolution

e Reco neutrino energy = lepton energy + hadronic
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Approximation (CSDA)

e For uncontained events:

y
© Momentum is computed with Multiple At low-E — contained, CSDA works well
Coulomb Scattering (MCS) Higher-E — uncontained, MCS is better but

needs to be improved
Henrique Souza, Pierre Granger
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Flavor identification

Using a Convolutional Visual Network
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DUNE work in progress

Confusion matrix: flavour

nu er 8.7%

True

nu_mufp 11.4% 2.5%

1 1
NC nu_e nu_mu
Predicted

Additional statistical separation can be obtained for numu/numubar with Michel e” tagging:
o J"always decaysin e’

Candidate
muon

o W candecaytoe (~28%) or be captured on Argon nuclei (~72%)

Sofia Farrell, Aaron Higuera, Matteo Galli
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Sensitivity studies

MaCh3 used as oscillation fitter — relies on the sampling of posterior
likelihood using Markov Chains
Implementation of DUNE atmospherics in MaCh3 ready to go

Next steps:

e First statistics-only fits with the reconstructed atm. sample
e Implementation of realistic flux, cross-section and detector systeme
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Camille Sironneau

IRN Neutrino October 2024

FrElas_N

Frinel_N

FrAbs_N|

FrPiProd_N|

14




Summary and conclusions

e Presented strong motivations for doing physics with atmospheric DUNE
neutrinos in DUNE : physics
o detector capabilities + experiment timeline -
o complementarity with beam neutrinos
— potential to achieve higher sensitivities with joint analysis
e Reconstruction is challenging, efforts are ongoing to adapt software
to atmospherics specificities
e |n addition to angular and energy reco, current work being done to improve vertex reconstruction
(I Cheong Hong)
e Also investigating reconstruction of tau neutrinos (Barbara Yaeggy)
e Analysis infrastructure with MaCh3 in development to produce updated oscillation sensitivity
projections — full implementation of different systematics in the works
e First A&E paper on reconstruction for atmospheric neutrinos in progress
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Thanks a lot for your attention !
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