

From T2K to Hyper-Kamiokande

Claudio Giganti

The Japanese LBL programme

- Successful programme since > 20 years
- Based on the well established water Cherenkov technology for the far detector
 - First detection of SN neutrinos by Kamiokande (1987)
 - Discovery of neutrino oscillations by Super-Kamiokande (1998)
 - First observation of ν_{μ} disappearance (K2K in 2005) and ν_{e} appearance (T2K in 2013) in ν beam
 - Hints of CP violation in the leptonic sector by T2K in 2019
- Towards precision measurements
 - High stat with larger far detector \rightarrow Hyper-Kamiokande will start in 2027
 - Small syst with near detectors → ND280 upgrade finalized in 2024, ND280++ for Hyper-Kamiokande?

T2K experiment

- High intensity ~600 MeV ν_{μ} or $\bar{\nu}_{\mu}$ beam produced at J-PARC (Tokai)
- Neutrinos detected at the Near Detector (ND280) and at the Far Detector (Super-Kamiokande)
 - v_e and \bar{v}_e appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of ν_{μ} disappearance $\rightarrow \theta_{23}$ and $|\Delta m^2_{32}|$

Hyper-Kamiokande

- Same beamline but higher intensity 500 kW \rightarrow 1.3 MW
- From SK to HK \rightarrow 8 times larger far detector
- Huge stat from day $0 \rightarrow$ need a well understood Near Detector to characterize beam \rightarrow ND280
- Towards high precision \rightarrow add intermediate detector (IWCD) and further upgrades of ND280 (ND280++)

1 y HK ~ 20 y of T2K

T2K/HK oscillation analysis

Neutrino flux prediction: Proton beam measurement Hadron production (NA61/ SHINE replice target data)

ND280 measurements: ν_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Neutrino interactions: **Cross-section models External data**

Near and Far detector data are fitted either sequentially or simultaneously depending on the analysis considered

Prediction at the Far Detector: Combine flux, cross section and ND280 to predict the expected events at SK

Measure oscillation parameters!

SK measurements: Select CC ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , $\overline{\nu}_{e}$ candidates after the oscillations

Off-axis ND280

- Measure beam spectrum and flavor composition before the oscillations \bullet
- Detector installed inside the UA1/NOMAD magnet (0.2 T) lacksquare
- An electromagnetic calorimeter to distinguish tracks from showers
- Upgraded in 2023 but for the analyses shown here the original tracker system is used:
 - 2 Fine Grained Detectors (target for ν interactions). FGD1 is pure scintillator, FGD2 has water layers interleaved with scintillator
 - ionization

• 3 Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of

Systematics uncertainties

Sample	Pre-ND fit	Post-ND fit
ν-mode 1Rμ	16.7%	3.4%
v-mode 1Re	17.3%	5.2%
ν -mode MR	12.5%	4.9%
ν -mode 1Re+d.e.	20.9%	14.3%
$\overline{\nu}$ -mode 1Rµ	14.6%	3.9%
$\overline{\nu}$ -mode 1Re	14.4%	5.8%

SK Single ring µ-like sample

SK single ring e-like sample

Oscillation analysis results

Sample	δ _{CP} =-π/2	$\delta_{CP}=0$	$\delta_{CP}=\pi/2$	δ _{CP} =π
ν -mode 1R μ	417.2	416.3	417.1	418.2
ν -mode MR	123.9	123.3	123.9	124.4
⊽-mode 1Rµ	146.6	146.3	146.6	147.0
ν -mode 1Re	113.2	95.5	78.3	96.0
$\overline{\nu}$ -mode 1Re+d.e.	10.0	8.8	7.2	8.4
$\overline{\nu}$ -mode 1Re	17.6	20.0	22.2	19.7

 Preference for δ_{CP}~-π/2 but CP conserving values are within the 2σ interval

Credible intervals marginalized over both hierarchies

The Near Detector upgrade

Replace part of the P0D detector (measured NC π^0 production) with a new scintillator target (SuperFGD), two High-Angle TPCs and six ToF planes

arXiv:1901.03750 unu zunu Intin,

Strong contribution from CERN and Neutrino Platform

NP-07 project

- Assembly of the two High-Angle TPCs and of the 6 TOF planes at CERN
- Production of ERAM
 readout planes
- TPC gas system done by CERN
- Procurement and shipment of Super-FGD box
- CERN EP NU group working on T2K

From T2K to HK

- First physics runs with full ND280 upgrade on-going
- Expect to select 20k ν_{μ} CC0 π interactions in the super-FGD for 1 month of beam
 - ~ half of them with a reconstructed proton
- Reduce systematics uncertainties in T2K oscillation and cross-section analyses
- Ready to constraint flux and cross-section from day-0 of Hyper-Kamiokande
- Transfer French leadership in ND280 from T2K to HK
- Further ND280 upgrades ? ND280++!

T2K+SK joint analysis

- T2K has good sensitivity to δ_{CP} but mild sensitivity to mass ordering
- SK has good constraint on mass ordering but not on δ_{CP}
- Adding SK atmospheric sample allows to break the degeneracies between the CP violation parameter δ_{CP} and the mass ordering \rightarrow boost sensitivity to CP
- Proof of concept for Hyper-Kamiokande determination of mass ordering and δ_{CP}

Hyper-Kamiokande

Not long enough to oscillate ong enou

Atmospheric neutrinos

Cosmic ray

- **Discovery of CP violation in the** leptonic sector
- **Precise measurement of \delta_{CP}**
- Sensitivity to mass ordering with atmospheric neutrinos

1 1

u

More details in Denis presentation tomorrow

HK sensitivity

- Discovery of CP violation at 5σ (3σ) for >60% (>80%) of the possible values of δCP
 - For maximal CP violation
 5σ discovery can be
 obtained in <3y
- Combination of beam and atmospheric neutrinos allows to resolve degeneracy between MO and δ_{CP}
- Sensitivity studies using T2K/SK joint analysis framework ongoing

	$\sin^2 heta_{23}$	Atmospheric neutrino
Mass	0.40	2.2 σ
ordering	0.60	4.9 σ ·
θ_{23}	0.45	2.2 σ
octant	0.55	1.6σ

10 years with 1.3MW, normal mass ordering is assumed

HK construction status

Excavating world largest human-made cavern

- Excavation on-going → expect to complete by the end of the year
- 20" PMTs being produced by Hamamatsu
- Assembly of the electronics modules on-going at CERN (next slide)
- Goal to start HK operation in 2027

HK activities at CERN

- HK electronics mostly produced in Europe
- In France we are responsible for the time generation and distribution system and for the test bench @ CERN
- All modules (~1000) will be assembled at CERN in 2025 before shipment to Kamioka
- Currently working on the 10-units test iand on the vertical slice tests with the purpose of testing all the subsystem before mass production
- MoU to become a Neutrino Platform project in preparation

Conclusions

- Seamless program → world leading data taken by T2K while HK is being built
 - T2K data with upgraded Near Detector are critical for T2K but also for early analyses of Hyper-Kamiokande data
 - HK will come online in 2027 \rightarrow 1 year of HK data ~ 20 years of T2K data
- Strong french contribution to this program from CEA and IN2P3 groups (LLR, LPNHE and ILANCE)
- Important roles of European groups in T2K and HK
- CERN has already been an hub for T2K/HK activities
 - NP-07 T2K Near Detector upgrade
 - HK electronics assembly project
- Continuous support from Europe (and from CERN)