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multi-tracer Line Intensity MappingCMB secondaries

transients (FRB, GW)
as probes of diffuse gas

multiwavelength galaxy surveys

all sky
X-ray surveys

weak lensing
& CMB lensing

Bernal & Kovetz 2022



outline for this talk

• physics based galaxy formation models: status 
& open questions

• predictions for LIM (biased view)
• way forward



explicitly solve
physics eqns for
particles/grid cells;
sub-grid recipes

track flows of 
matter (& energy)
within cosmological
merger trees using 
physics-based recipes

Wechsler & Tinker 2018

Somerville & Davé 2015
Naab & Ostriker 2017
Crain & van de Voort 2023

solve PDEs for
DM, stars, gas
sub-grid models
for SF, feedback,
BH, etc

solve ODEs for gas
flows between
global reservoirs; 
recipes for SF, BH
growth, feedback, etc

assume gas 
inflows track
DM; empirical
recipes for SF,
 etc

mapping from DM 
(sub)-halos to 
galaxy properties

model for ngal as 
function of  halo 
mass (or other halo  
properties)



most H
neutral

most H
ionized
(~1 Gyr)

image credit: NASA

epoch of reionization



Perez-Gonzalez et al. 2025

rss et al. 2025

JWST has discovered a more
abundant population of UV-
luminous galaxies at z>8
than expected from pre-JWST
observations or pre-launch models
--density modulated star formation efficiency, 
bursty star formation, evolving IMF, dust ejection?

ionizing photon ‘overproduction’ crisis (Munoz+2024) 
or ‘all bark and no bite’ (Papovich+2025)?

Kocevski et al. 2024

discovery of abundant low-luminosity high-z 
AGN population (many X-ray weak) – role of
AGN in H reionization (Madau et al. 2024)?
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Walter et al. 2020

Walter et al. 2020

cosmic baryon cycle: unveiling the drivers 
of galaxy growth*

Peroux & Houk 2020

-how do mass, metals, and energy cycle in and out
of the ISM/CGM?

-which physical processes drive this evolution?

*priority area identified by Astro2020 Decadal Survey

see also
 Madau & Dickinson 2014

PHANGS collaboration, Design: Daniela Leitner

redshift redshift
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how do stellar and black hole feedback work?

mass of the dark matter halo

stellar
feedback BH feedback



Horizon-AGN 
(Dubois+2014) 

MUFASA; SIMBA (Davé+2019,
 Anglés-Alcázar+2017a) 

Eagle (Schaye+2015) 

Blue Tides (Feng+2016, Wilkins+2017)

Illustris (Genel+2014, 
Vogelsberger+2014) 
IllustrisTNG (Pillepich+2017)

Magneticum 
(Hirschmann+2014)

Romulus 
(Tremmel+2017)

Hopkins et al. 2018; 
Ma et al. 2018

cosmological hydrodynamic simulations

equations of gravity, hydrodynamics, thermodynamics 
solved numerically for particles or grid cells representing
dark matter, gas, stars, and black holes



an incomplete list of processes that 
currently require sub-grid treatment in 
large-volume cosmological simulations

� the multiphase interstellar medium (ISM)
� star formation (conditions for its onset, and its 

efficiency)
� stellar feedback (stellar winds, radiation, 

SNae)
� chemical evolution and metal diffusion
� black hole seeding
� black hole accretion
� black hole feedback (kinetic, thermal, 

radiation)



IllustrisTNG
Pillepich et al. 2018

parameters are 
tuned to achieve a 
“best” match (by eye)
to a set of calibration
observations

other calibrated 
parameters:
-stellar wind mass loading 
and velocity
-wind metal loading
-SF timescale (efficiency)
-BH accretion efficiency
-parameters controlling 
mode & effect of BH FB



Chisari et al. 2018

differences due to
different implementations
of baryonic feedback
are >> precision needed
to constrain ’fundamental
physics’

the distribution of matter on Mpc-10 Mpc
scales is altered by baryonic processes



F. Villaescusa-
Navarro

Shy Genel Daniel Angles
-Alcazar

Villaescusa-Navarro et al. 2021

https://www.camel-simulations.org

• suite of thousands of state-of-the-art 
hydrodynamic sims

• IllustrisTNG, SIMBA, Astrid, Magneticum, Swift-
EAGLE, Ramses, Enzo, Crocodile, Obsidian 

•  6 parameters: 
{Ω! , 𝜎", 𝐴#$%, 𝐴#$&, 𝐴'($%, 𝐴'($&}

• extended parameter set for some models
• (25/h Mpc)3 boxes; group/cluster zooms; 
(50/h Mpc)3 boxes in progress
• Designed for machine learning applications
• all data public!

Cosmology and Astrophysics with 
MachinE Learning Simulations



video from CAMELS project; F. Villaescusa-Navarro



kinetic wind sub-grid: weak preventative feedback on all scales
thermal wind sub-grid: stronger preventative feedback out to  beyond Rvir

Wright, rss et al. 2024

EAGLE: 
thermal

TNG:
(mostly) kinetic



IGM/ejected reservoir
/diffuse gas

Rturnaround Rvir Rgal

CGM/hot gas

ISM (cold gas)
stars

IGM-CGM

CGM-ISM
ISM-CGM

CGM-IGM

slide adapted from V. Pandya 17

traditional semi-analytic/flow/regulator models

Somerville & Davé 2015



Nelson et al.
 2019

“resolved”/
explicit 
physics

semi-resolved,
mixed explicit+
sub-grid

sub-grid

pc
~10 pc

~100 pc

~kpc

MTNG

FLAMINGO

109

SAMs



LCDM galaxy simulations report card

passing grades:
• stellar mass functions/UV/optical LF z~0-10
• reionization history
• clustering of optically selected galaxies, including 

dependence on color/mag/size
• qualitative correlations of galaxy properties (color, SFR, 

morphology) with larger scale over-density
• cold gas fractions/cold gas MF z=0
• galaxy (optical/stellar) size vs. stellar mass z=0-2ish
• galaxy color/SFR bimodality z~0-1
• CGM scale baryon (hot gas) fractions z~0

Somerville & Davé 2015; Naab & Ostriker 2017; Crain & van de Voort 2023 



LCDM galaxy simulations report card

mixed/uncertain:
• cold gas fractions/cold gas mass functions 

~cosmic noon (Popping et al. 2019; 
Davé+2020)

• numbers of ULIRGy galaxies (e.g. sub-mm 
counts, Herschel, etc) ~cosmic noon (e.g. 
Wang et al. 2019; Hayward et al. 2021)

• gas phase stellar mass-metallicity relation?



LCDM galaxy simulations: report card

failing grades:
• galaxy UVLF z>10 (e.g. Finkelstein+22)
•  diffuse IGM z<1 as probed by Lyman-alpha forest 

(Tillman et al. 2023)
• extended CGM as probed by Sunyaev-Zeldovich 

(Amodeo et al. 2021)
• numbers of massive quenched galaxies z>3-4 

(Valentino+23, Lagos+24)
• AGN luminosity functions at all z (Habouzit+22)



Popping et al. 2019

some models have difficulty reproducing enough galaxies with large cold
gas reservoirs at cosmic noon



Davé et al. 2020



Hayward et al. 2021; Araya-Araya et al. 2025

highly SF galaxies massive quenched galaxies

models that do better at reproducing highly star forming galaxies at z~2-4 have 
more difficulty matching the number of massive quenched galaxies



emission from the ISM

Orion Nebula



Marinacci et al. 2019 

IC5332 PHANGS
most large volume cosmo sims adopt an ‘effective 
equation of state’;  artificially pressurizes and
 ‘smooths’ ISM



simulations with non-equilibrium thermo-chemistry  + on the fly radiative transfer

RAMSES-RTZ à MEGATRON
Katz 2022

line ratios are very sensitive to
conditions in the ISM and
hence to details of star
formation & feedback 
physics implementations 
in sims

e.g. [O III] λ5007 / [O II] λλ3727 
C IV λλ1550/[C III] λλ1908

[OIII]4363/5007 

 (Katz et al. 2024)



Gergö PoppingPopping et al. 2019; see also Garcia et al. 2024

The art of modeling line emission from the ISM



Popping et al. 2019; Popping et al. 2016; Popping et al. 2014



the same models are able to fit scaling relations for both CO and [CII] – 
places constraints on small-scale structure of the ISM 



Shengqi
Yang

building multi-tracer mock intensity 
maps for next generation experiments

-2x2 sq. deg. lightcones from N-body sims & populate with 
galaxies using the Santa Cruz SAM
-predict all CO lines, [CII], [CI]

Yang et al. 2021

COMAP-like mock map

see paper for EXCLAIM-like [CII] map



Yang et al. 2021

COMAP forecast

see paper for EXCLAIM ([CII]) forecasts

Voxel Intensity distribution power spectrum



https://users.flatironinstitute.org/~rsomerville/Data_Release/LIM/
Yang et al. 2022

empirical halo model 
description of physics
based model

fraction of line-emitting galaxies

dispersion in line luminosity

line luminosity vs. halo mass



Breysse et al. 2022

early results: Santa Cruz + sub-mm SAM mmIME forecast is low



Breysse et al. 2022

inference for physical quantities (e.g. rH2) 
depend on underlying modeling assumptions



Breysse et al. 2022

traced to different underlying assumptions about how CO
line emission traces H2

CO SLED rJ,1 = L’J/L’(1-0) aCO = MH2/L’CO(1-0)

halo mass

sub-mm SAM

empirical model



building a framework for 
multi-tracer joint inference

line luminosity
relation emulator
Li(p)

ICs, parameters

physical
properties
(m*, rgas,
Z, SFR, …)

field level
or

summary
inference

hydro
+emulator

semi-analytic
model

joint
posterior

or

mock map
+noise, 
beam

e.g. Zhang, Pullen, rss et al 2023



Line luminosity emulator using Gaussian Processes

Want to evaluate

 𝐿!"#$(𝑀%&', 𝑀∗, SFR, 𝑅)"*+, 𝑍)

Assume each value of 𝐿!"#$ is a correlated random 
variable, find the maximum probability

𝑃(𝐿!"#$,$*- |𝐿!"#$,./"#)
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Breysse et al. in prep.



Line Luminosity Relation  Emulator Performance

• ~1000x speedup on CPU (faster GPU version coming!)
• ~1% accuracy on log(L), 10% accuracy on LIM integrals
• Currently includes CII and CO(1-0) through (5-4)
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Breysse et al. in prep. see also Garcia et al. 2024



Yang et al. 2025

line emulator for Ha, Hb, [OII], [OIII] with mixture density networks trained on FIRE

see also Tolgay talk



OBSERVED DATA

TRAIN

Cosmological 
hydrodynamic 

simulations
CMB

Galaxies

SIMULATED DATA

CMB

Galaxies

MEASURE OF
SIMILARITY

Machine 
learning 

accelerated 
forward 
model

SUBGRID MODELS FOR COSMOLOGICAL SIMULATIONS

COSMOLOGICAL
PARAMETERS

INITIAL CONDITIONS
OF THE UNIVERSE

http://learning-the-universe.org/

LIM?
physics-grounded
subgrid based on
multi-scale 
simulations



● Cosmological parameters:
○ Ωm from 0.1 to 0.5  |  σ8 from 0.6 to 1

➢ 1000+ DM only Gadget-III simulations
➢ (100 h-1 Mpc)3 in volume
➢ N=6403 particles of ~1-6 x 108 h-1 Msol
➢ 100 snapshots, ROCKSTAR catalogs, 
and ConsistentTrees merger trees

Lucia Perez

under development: larger volume, scaled
DM simulations (R. Stiskalek) 

Latin-hypercube exploration of ~10 galaxy
formation parameters using Santa Cruz SAM

photometry & emission lines

-SAM



Automatic
Differentiation

Implicit Likehood 
Inference

with automatic differentiation 
and parallelization

modeling galaxies as complex dynamical systems

a new physical framework for
accelerated Bayesian inference

using galaxies and their gas
Multi-CPU/GPU
Parallelization

CGM BHs

Satellites SF/ISM

accelerated exploration of parameter variations
for millions of model realizations in parallel

Pandya et al. (in prep.)

Viraj Pandya

Pandya et al. 2023; Pandya et al. in prep



hamiltonian monte carlo

use gradients to speed up 
parameter space exploration

modeling galaxies as complex dynamical systems with automatic differentiation 
and parallelizationImplicit Likelihood Inference

train a neural network to learn the
mapping between parameters & outputs (e.g. Ho et al. 
2024) à directly constrain the multi-dimensional posterior

astrophysics parameters

Viraj Pandya



summary

• upcoming LIM experiments have great 
potential to constrain uncertainties in galaxy 
formation models

• physics-based galaxy formation models offer 
useful insights for interpreting LIM results

• new techniques (next-generation SAMs, ML-
based emulators) are enabling physics-
grounded multi-tracer inference



extra slides


