DATA ANALYSIS CHALLENGES IN 21CM LIM: **A HERA PERSPECTIVE**

STEVEN MURRAY LIM25, ANNECY, JUNE 2025

Funded by the European Union

European Research Council Established by the European Commission

SCUOLA NORMALE **SUPERIORE** **DALL-E3** "HERA gazing at the first stars, with a rubber duck"

OUTLINE

- 1. WHY THE 21CM LINE?
- 2. BIG-PICTURE CHALLENGES + APPROACHES
- 3. SPECIFIC CHALLENGES:
 - 1. RFI AND MISSING DATA
 - 2. MUTUAL COUPLING
 - 3. PROPAGATION OF SYSTEMATICS
 - 4. SIMULATIONS AND VALIDATION

~50

~700 MHz

Antennas

X (m)

X (m)

X (m)

υ (m)

Image

3D MAPS & POWER SPECTRA

HERA Collaboration 2022 (incl. SGM)

f = 50 MHz

THINKING IN POWER SPECTRUM SPACE

LIMIT SET BY CHANNEL RESOLUTION

Small Scales

THINKING IN POWER SPECTRUM SPACE

LIMIT SET BY CHANNEL RESOLUTION

SPECIFIC CHALLENGES

#1 – RFI & MISSING DATA

RFI IN HERA DATA

HERA Collaboration, 2025 (in prep)

EFFECT OF RFI

AVERAGING THEN IN-PAINTING

AVERAGING THEN IN-PAINTING

AVERAGING THEN IN-PAINTING

PER-NIGHT IN-PAINTING

"IN-PAINTING" INSERTS A VALUE INTO THE GAP **ONLY** TO MAINTAIN SMOOTHNESS

PER-NIGHT IN-PAINTING

... BUT IT'S EASY TO GET IT VERY WRONG...

See Khandakar's talk later today!

#2: MUTUAL COUPLING

WHAT IS MUTUAL COUPLING?

When Sky signal enters one antenna/feed & **Re-Radiates** into other antennas.

WHAT IS MUTUAL COUPLING?

When Sky signal enters one antenna/feed & **Re-Radiates** into other antennas.

k ~ k_{| |}

WHAT IS MUTUAL COUPLING?

Rath, Pascua+2025 (incl. SGM)

MODELING MUTUAL COUPLING

First-order semi-analytic model developed by: Kern+2019 JOSAITIS+2021 RATH+2024

"Virtual" baselines formed with each antenna

 $\sum \left(\mathbf{V}_{ik}^{(0)} \mathbf{X}_{jk}^{\dagger} + \mathbf{X}_{ik} \mathbf{V}_{kj}^{(0)} \right).$

Coupling Coefficients based on geometry and antenna properties

HERA Collaboration 2025 (in prep)

MITIGATING MUTUAL COUPLING

400

0

800

-800 800 Delay, τ [ns]

-400

400

0

HERA Collaboration 2025 (in prep)

-400

-800

Rath, Pascua+2025 (incl. SGM)

FRINGE-RATE FILTERING DEVELOPED BY: PASCUA+2025 (SIGNAL LOSS)

MITIGATING MUTUAL COUPLING

Delay (ns)

Delay (ns)

More direct inversion requires determining XFROM DATA.

Some different approaches:

- (RATH+ IN PREP, HEWITT+ IN PREP)
- \bullet

• MODEL X BASED ON GEOMETRY + SMOOTH PARAMETRIC MODEL OF HORIZON-SENSITIVITY. FIT TO DATA UNDER ASSUMPTIONS ABOUT UNCOUPLED POWER AT HIGH FRINGE RATE AND/OR DELAY.

ESTIMATE EVERY ELEMENT OF X DIRECTLY (HIGH-DIMENSIONAL INFERENCE) ASSUMING CONSTANCY OVER TIME. (COX+ IN PREP)

#3: PROPAGATING SYSTEMATICS TO PARAMETER INFERENCE

NO ESCAPE FROM UPPER LIMITS

NO DETECTION CAN BE MADE UNLESS WE CAN AGREE THAT RESIDUAL SYSTEMATICS ARE SUB-DOMINANT.

This requires a consistent model of residual systematics PROPAGATED THROUGH TO THE POWER SPECTRUM.

PROPAGATING SYSTEMATICS: BAYESIAN FORWARD MODELS

- FULL FORWARD MODELS ARE HARD.
- Some initial efforts that condition on Certain Components:
 - **BAYESEOR:** (SIMS+2019, BURBA+2023)
 - **GIBBS SAMPLING:** (KENNEDY+2023, GLASSCOCK+2024, WILENSKY+2024)
- New 'full' end-to-end high-dimensional framework from Kern 2019.
 - AUTO-DIFFERENTIABLE
 - NO SUPPORT FOR MUTUAL COUPLING (YET!)

Kern+2025

#4: DETAILED SIMULATIONS FOR VALIDATION

NEW INSTRUMENT SIMULATORS

- New instrument simulators are ABUNDANT, FROM SLOW-AND-ACCURATE, TO FAST-AND-BESPOKE:
 - PYUVSIM (LANMAN+2019) \bullet
 - WODEN (LINE+2022) \bullet
 - Oskar
 - MATVIS (KITTIWISIT, MURRAY+2025) \bullet
 - FFTVIS (COX, MURRAY+2025) ightarrow

(Kittiwisit, murray+2025)

END-TO-END VALIDATION SIMULAITONS

- ENABLE DETAILED VALIDATION TESTS OF ANALYSIS PIPELINES
- BECOMING MORE ACHIEVABLE WITH FASTER SIMULATORS
- LATEST HERA ANALYSIS SUPPORTED BY HUGE MULTI-TB MOCK DATA SIM.

See Shabbir's talk later today!

SUMMARY

- 21CM DATA ANALYSIS CHALLENGES FOCUSED ON PRESERVING SPECTRAL SMOOTHNESS AT ALL COSTS.
- A LA CARTE MENU OF SPECIFIC CHALLENGES:
 - RFI AND MISSING DATA
 - MUTUAL COUPLING
 - PROPAGATION OF SYSTEMATICS
 - INSTRUMENT SIMULATION

BONUS: HERA SNEAK-PEEK

- PHASE II INSTRUMENT COVERS BROADER FREQUENCY RANGE (REDSHIFTS $\sim 5.6 - 25$)
- >300 NIGHTS OF DATA TAKEN. 14 NIGHTS IN UPCOMING LIMITS.
- ~140 ANTENNAS (COMPARED TO \sim 30 IN PHASE I) ullet
- **REDUNDANT AVERAGING** (ENHANCED SNR) ightarrow
- SIMILAR SENSITIVITY TO PREVIOUS RELEASE WITH 14 ulletNIGHTS INSTEAD OF 100.
- **NOISE-LIMITED** AT K>~0.6 H/MPC. \bullet
- **MUTUAL COUPLING-DOMINATED** FROM K=0.3-0.6 igodolH/MPC

HERA Collaboration 2025 (in prep) **PRELIMINARY**

BONUS SLIDES

MATVIS USES A 'TRICK' TO TURN THE VISIBILITY INTEGRAL INTO A SINGLE MATRIX-MATRIX PRODUCT.

This is fast on both CPU and GPU.

Per-baseline 'fringe' term

 $V_{ij}^{pq}(v_a,t) = \sum_{nkk'} A_i^{pk}(v_a,\theta_{\rm hrz}^{(n)}(t)) \cdot A_j^{qk'*}(v_a,\theta_{\rm hrz}^{(n)}(t))$ $\times \mathbf{C}_{kk'}^{(n)}(v_a, \theta_{eq}^{(n)}) \exp\left(-2\pi i v_a \tau_{ii}^{(n)}\right)$

Per-antenna 'fringe' terms

FAST MATRIX MULTIPLY

MATVIS USES A 'TRICK' TO TURN THE VISIBILITY INTEGRAL INTO A SINGLE MATRIX-MATRIX PRODUCT.

This is fast on both CPU and GPU.

Per-baseline 'fringe' term

 $V_{ij}^{pq}(v_a,t) = \sum_{nkk'} A_i^{pk}(v_a,\theta_{\rm hrz}^{(n)}(t)) \cdot A_j^{qk'*}(v_a,\theta_{\rm hrz}^{(n)}(t))$ $\times \mathbf{C}_{kk'}^{(n)}(v_a, \theta_{eq}^{(n)}) \exp\left(-2\pi i v_a \tau_{ii}^{(n)}\right)$

Per-antenna 'fringe' terms

FAST MATRIX MULTIPLY

Coordinate transformations between Ra/Dec and Alt/Az are not a bottleneck on THE CPU

But when the matrix-multiply is done on GPU, they become non-negligible

So I re-wrote the guts of the astropy coordinate transform on the GPU:

BUT EVEN THIS IS NOT FAST ENOUGH...

We've developed a new simulator that is 3x as fast on the CPU as matvis on the GPU. IT UTILIZES NON-UNIFORM FFT'S USING FINUFFT (FLAT-IRON NON-UNIFORM FFT). T HAS THE LIMITATION THAT ALL BEAMS MUST BE IDENTICAL.

WE NEED 43K CPU-HOURS PER SIMULATION! **GPU VERSION IS COMING...**

	述 MIT license
fftvis Visibi	: A Non-Uniform Fast Fourier Tran lity Simulator
💭 Run Tests	passing Codecov 92% code style black
fftvis is Fourier Tra	a fast Python package designed for simulating interferometric visibilit nsform (NUFFT). It provides a convenient and efficient way to generat

Cox, **SGM+**2024 (in prep)

sform-based

ies using the Non-Uniform Fast e simulated visibilities.

