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Line Intensity Mapping (LIM)

• LIM is a technique whereby one estimates the 3D spatial 
distribution of galaxies by from spectral/angular imaging of intensity 
- in the limit where individual galaxies are not resolved in angle. 

• The 3rd dimension is redshift - which can be inferred from the 
spectrum if one can isolate the emission of one or more spectral 
lines. 

• There can be confusion with other spectral lines corresponding to  
different redshifts as well as contamination by continuum emission. 

• Hydrogen intensity mapping (HIM) has nearly no line confusion 
but the continuum contamination is extremely large. 

• Isolation of specific line emission can be differentiated from 
continuum emission because it produces sharp spectral features 
not produced by continuum emission.



Beam Chromaticity

• Differentiating the spectral pattern of emission from the 
angular pattern is essential for LIM to work well. 

• Typically all spectral channels use the same imaging 
optics which is usually diffraction limited.  Diffraction 
causes the beam size to grow with wavelength. 

• More generally any wavelength dependence of the 
angular beam shape is known a chromaticity.  This is 
always present at some level. 

• HIM imaging is often done with interferometers with 
which one can synthesize beams localized on the sky  
but these synthetic beams suffer from large 
achromaticity.



Spectral / Angular Aliasing

• Ignoring chromaticity leads to spatial 
structure being aliased into spectral 
structure and vice versa. 

• imaging data generally does not have 
sufficient information to completely 
remove aliasing. 

• One can optimally synthesize beams 
(linear superpositions) which are less 
chromatic. 

• In addition: optimizing the optical design 
may significantly reduce the chromaticity 
of the optimal synthetic beams. 
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Mode Mixing: Abstract
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• Any finite “camera” will only “see” a finite number of “beams” on the sky.  

• The Hilbert space of all linear combinations of beams is the “space of beams”. 

• This space of beams varies with frequency. This frequency dependence of the space 
of beams is “mode mixing”. It irreducibly mixes frequency dependence and angle 
dependence. 

• Without mode mixing one could precisely measure the (spatially averaged) frequency 
spectrum with no contamination from angular structure.  Generally this is not possible. 

• Hi-Pass filtering out smooth spectrum foregrounds works better when the amount of 
mode mixing is minimized. 

• Goal: to “purify” the spectrum from mode mixing contamination. 

• Purification can be used to: 

• optimally analyze data from a given camera 

• optimize optical design of cameras
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Re-Imaging / Beam Projection
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• Given a camera with a finite set of beams (a.k.a. pixels) whose datum of output is  

 

where  is the beam number and  the frequency channel. 

•  is the noise which we henceforth ignore. 

• The space-of-beams has dimensions given by the number of ,  

• i.e.  (number of angular beams times number of frequency channels) 

• Define a metric, , on sky pattern 

 

• the kernel  is used to weight angular scales and frequencies according to one’s needs.   

• e.g.   weights all angular scales frequencies equally 

• The “re-imaged” or “beam projected“data is 

 

•  is in the space of beams.  Everything else is set to zero.  

•  will have mode mixing if the space-of-beams does.

di,α = ∫ d2n̂ ∫ dν Bi,α[n̂, ν] Iν[n̂] + Ni,α

i α

Ni,α

Bi,α[n̂, ν]

nbeam × nch

∘

( f ∘ g) ≡ ∫ dν∫ dν′ ∫ d2n̂∫ d2n̂′ K[n̂ ⋅ n̂′ ; ν, ν′ ] f [n̂, ν] g[n̂′ , ν′ ]

K

K[n̂ ⋅ n̂′ ; ν, ν′ ] = δ(2)[n̂, n̂′ ]

̂Iν[n̂] ≡ ∑
i,α

∑
j,β

Bi,α[n̂, ν] (Bi,α ∘ Bj β)−1 dj,β

̂Iν[n̂]

̂Iν[n̂]
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Spectral Purity
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•  Consider the simplest case of factorizable beams with uniform frequency channels (  and ) 

    where  

and scale-free weighting 

   

• One can construct a complete orthonormal bases  (  and ) 

   where  so  

where the  dependence of  gives the chromaticity of spectrograph . 

• An achromatic spectrograph would have no  dependence which is generally not possible. 

• One can quantify the achromaticity or spectral purity of a spectrograph  by 

   where    

•
            only for an achromatic spectrograph 

• .One can define the purity orthonormal basis where  and  has the largest possible value,  has the 
largest possible value in the subspace orthogonal to ,  has the largest value in the subspace orthogonal to  
and , etc 

• This is a type of Karhunen-Loeve decomposition similar to that developed in Shaw et al. (2013 & 2014) m-mode analysis.

i = 1,…, nbeam α = 1,…, nch

Bi,α[n̂, ν] = bi,α[n̂] βα[ν] ∫ dν βα[ν] ββ[ν] = δα,β

K[n̂ ⋅ n̂′ ; ν, ν′ ] = δ(2)[n̂, n̂′ ] δ[ν − ν′ ]

a = 1,…, nbeam α = 1,…, nch

B̂a,α[n̂, ν] = b̂a,α[n̂] βα[ν] ∫ d2n̂ b̂a,α[n̂] b̂b,α[n̂] = δa,b B̂a,α ∘ B̂b,β = δa,b δα,β

α b̂a,α[n̂] a

α

a

pa ≡ ∫ d2n̂ b̄a[n̂]2 b̄a[n̂] ≡
1

nch

nch

∑
α=1

b̂a,α[n̂]

pa ∈ [0,1]
nch

∑
a=1

pa = nbeam pa = 1

b̂a,α[n̂] = ̂pa,α[n̂] p1 p2
̂p1,α[n̂] p3 ̂p1,α[n̂]

b̂2,α[n̂]
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Purification
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•  The re-imaging / beam projection algorithm in the simple case described in the previous slide is 

 

 which uses  the beam projection kernel: 

 

• One can modify this algorithm to give a “purified image” which has less chromaticity / mode mixing by choosing a 
minimal threshold, , which only uses the purity basis up to  the achromaticity parameter 

 

 which uses  the purification kernel: 

 

• If  is very close to unity or the space-of-beams has a lot of mode-mixing then the purified image has thrown out a lot 
of data. 

• In the Shaw et al. papers it was found in the case where continuum contamination was large that very little useful 
information was contained modes without very high purity. 

• This purification algorithm was used in the examples in this talk

̂Iν[n̂] = ∫ d2n̂′ ∫ dν′ ℬ[n̂, n̂′ ; ν, ν′ ] Iν′ [n̂′ ]

ℬ[n̂, n̂′ ; ν, ν′ ] ≡ ∑
i,α

∑
j,β

(Bi,α ∘ Bj β)−1 Bi,α[n̂, ν] Bj,α[n̂′ , ν′ ] =
nbeam

∑
a=1

nch

∑
α=1

nbeam

∑
b=1

nch

∑
β=1

̂pa,α[n̂] βα[ν] ̂pb,β[n̂′ ] βα[ν′ ]

pmin a ≤ npure

̂Iν[n̂] = ∫ d2n̂′ ∫ dν′ 𝒫[n̂, n̂′ ; ν, ν′ ] Iν′ [n̂′ ]

𝒫[n̂, n̂′ ; ν, ν′ ] ≡
npure

∑
a=1

nch

∑
α=1

npure

∑
b=1

nch

∑
β=1

̂pa,α[n̂] βα[ν] ̂pb,β[n̂′ ] βα[ν′ ]

pmin
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Example: Polarscope Dish Interferometer
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The Tianlai project has a 16 dish interferometer has long integrations staring at the 
North Celestial Pole for Hydrogen Intensity Mapping (HIM) using Earth rotation to 
create synthetic beam using  m-mode analysis. 

One can use the formalism outlines above to determine the dish configuration which 
minimizes the chromaticity of the synthetic beams.
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Purity and Telescope Design
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configuration space: split circle into n compact subarrays
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best performance: split into two compact subarrays
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where astounding 
purity is attained. 
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“narrow” w/ few cm 
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Take Aways

• Line Intensity Mapping infers the distribution of unresolved 
galaxies by mapping intensity and inferring the redshift space 
distribution particular lines. 

• Since galaxies are not resolved instruments with chromatic beams 
can mix / alias spatial structure into spectral features 

• This mode mixing can be a confounding effect for determine LSS 
from LIM.

• Presented here is one technique for extracting the parts of the 
intensity data which are more achromatic.

• Often there are “pure” parts which are very achromatic.
• Small optical design changes can greatly increase achromaticity
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