Modeling Radio Recombination Line Contamination in 21cm Intensity Mapping

Pip Petersen (he/him)

University of Washington

Matthew McQuinn

Yakov Faerman

Some Historical Context....

Radio Recombination Lines on Wikipedia now! (by me!)

What are Radio Recombination Lines (RRL) and how are they produced?

Produced through the **recombination** of electrons with Hydrogen in HII regions Hydrogen Lines with very high quantum number (n > 50) and usually $\Delta n = 1$

$$\nu = \frac{R}{c} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right)$$

Electron cascades down through energy levels, emitting photons Earlier estimates assume a 'fixed' optical depth $(\tau_L = 0.1)^*$

Can use this as motivation to explore optimistic (pessimistic) experimental contamination

*This optical depth is a significant overestimate

Petrovic & Oh 2011

$$T_b = 3.5 \times 10^{-4} \text{ K } \left(\frac{\rho_{\text{SFR}}}{0.1 \text{ M}_{\odot} \text{ yr}^{-1} \text{Mpc}^{-3}}\right) \left(\frac{\tau_L}{0.1}\right) \left(\frac{\nu_{obs}}{150 \text{ MHz}}\right)^{-2.8} (1 + z_{RRL})^{-2.3}$$

 $T_{21} = 9 (1+z)^{1/2} x_{\rm HI} \,\mathrm{mK}$

RRLs are individually weak, but in Intensity Mapping, this signal can get **stacked**

"Stacking" RRLs result in 3 different power spectra

 RRL Auto-Power Spectra

• 21cm x RRL Cross-Power Spectra

 RRL₁ x RRL₂ Cross-Power Spectra

And going back to the animation... we can see how each power spectrum changes with more contamination

z = 2

June 2, 2025

21cm auto

RRL auto

RRL x RRL

101

21 x RRL

21cm auto

RRL auto

101

— 21 x RRL

- RRL x RRL

100

100

k [h Mpc⁻¹]

k [h Mpc⁻¹]

z = 5

June 2, 2025

z = 2

z = 5

June 2, 2025

We can instead use a more physical optical depth (**T**) model

'Physical' ${\it T}$

June 2, 2025

Model **T**

June 2, 2025

100

k [h Mpc⁻¹]

101

 10^{-1}

k [h Mpc⁻¹]

k [h Mpc⁻¹]

RRL power spectra residuals

BW = 0.05

Want to measure 10% BAO to 1% accuracy

Oscillations at 0.1 level can shift BAO peak and so incorrect angular distances

Conclusions and Takeaways for LIM

Thank you!

Pip Petersen - University of Washington

piptersen.github.io

- RRLs are an important contaminant for **precision cosmology** in Intensity Mapping
- Cross-power spectra from RRLs introduce **ringing effects** that may impact estimates from BAO
- Current optical depth models for RRLs predict significant contamination in the 21cm Power Spectrum
- **Next steps**: Improve physical optical depth model across redshift

$$P_{RRL\times RRL} = \frac{J_{RRL}}{J_{21}} G^2(z_{RRL}) b_{RRL}^2 \frac{T_{RRL}^2}{T_{21}^2} \mathscr{P}_{RRL\times RRL} \qquad k_{\text{shift}} = k \times \frac{(1 + z_{\text{RRL}})}{(1 + z_{21})} \cdot \frac{H(z_{21})}{H(z_{\text{RRL}})}$$

$$\mathscr{P}_{RRL\times RRL} = P_{\text{matter}}(k_{\text{shift}})$$

$$P_{21\times RRL} = \frac{J_{RRL}}{J_{21}} G(z_{21}) G(z_{RRL}) b_{21} b_{RRL} \frac{T_{RRL}}{T_{21}} \mathscr{P}_{21\times RRL}$$

$$\mathscr{P}_{21\times RRL} = 2P_{\text{matter}}(k) \ e^{ik\Delta x_{21-RRL}}$$

$$P_{RRL_1\times RRL_2} = \frac{J_{RRL}}{J_{21}} G(z_{RRL_1}) G(z_{RRL_2}) b_{RRL_1} b_{RRL_2} \frac{T_{RRL_1} T_{RRL_2}}{T_{21}^2} \mathscr{P}_{RRL_1\times RRL_2}$$

$$\mathscr{P}_{RRL_1\times RRL_2} = 2P_{\text{matter}}(k_{\text{shift}}) \ e^{ik_{\text{shift}}\Delta x_{RRL_1-RRL_2}}$$

$$\left\langle \widetilde{\delta T}_{tot} \widetilde{\delta T}_{tot}^* \right\rangle = \left| \overline{T}_{21}(z_{21}) G(z_{21}) b_{21} \right|^2$$

$$+ \sum_{\ell} J^{-1} \overline{JT}_{RRL_{\ell}}^2 \int_{-\infty}^{\infty} \frac{dk'}{2\pi} P_{RRL_{\ell} - RRL_{\ell}} (\mathbf{k}_{\perp}, k_{\parallel} - k') e^{-i(k_{\parallel} - k')\Delta x} L \operatorname{sinc} \left(\frac{k'L}{2} \right)$$

$$+ \sum_{m} J^{-1} \overline{JT}_{21} \overline{JT}_{RRL_{m}} \int_{-\infty}^{\infty} \frac{dk'}{2\pi} P_{21 - RRL_{m}} (\mathbf{k}_{\perp}, k_{\parallel} - k') e^{-i(k_{\parallel} - k')\Delta x} L \operatorname{sinc} \left(\frac{k'L}{2} \right)$$

$$+ \sum_{p,q} J^{-1} \overline{JT}_{RRL_{p}} \overline{JT}_{RRL_{q}} \int_{-\infty}^{\infty} \frac{dk'}{2\pi} P_{RRL_{p} - RRL_{q}} (\mathbf{k}_{\perp}, k_{\parallel} - k') e^{-i(k_{\parallel} - k')\Delta x} L \operatorname{sinc} \left(\frac{k'L}{2} \right)$$

In the simplest form, we can generalize the full expression as

$$P_{\rm obs}(\vec{k}) = P_{21}(z_{21}) + \sum_{\ell} P_{RRL}^{\ell}(z_{RRL}^{\ell}) + \sum_{m} P_{RRL-21}^{m}(z_{21}, z_{RRL}^{m}) + \sum_{p,q} P_{RRL_p-RRL_q}^{p,q}(z_{RRL}^{p}, z_{RRL}^{q})$$
(26)