Framework for the Physical Interpretation of HI Power Spectrum Measurement with CHIME

> Albin Joseph CHIME Collaboration

 $P_{21cm}^{(obs)}(k;\overline{\Theta})$ **CHIME** Data

$$P_{21cm}^{(theory)}(k; \overrightarrow{\Theta})$$

Theory Model

$$P_{21cm}^{(obs)}(k; \overrightarrow{\Theta})$$
CHIME Data

1. Choose $P_{signal}^{(theory)}$ model with simple (linear, quadratic) dependence on model parameters, e.g.

$$P_{\text{signal}}^{(\text{theory})}(k,\mu,z;\vec{\Theta}) = \sum_{i} \theta_{i} P_{i}^{(\text{theory})}(k,\mu,z)$$

theory templates

 $\delta_1(\hat{n},\nu) \qquad \quad \delta_2(\hat{n},\nu)$

-d sliceFigfuthel.ov2erdleshisites $\delta f_n(\mathbf{x})$ of endemksites of Soft and the fight of the planet of the planet

1. Choose $P_{\text{signal}}^{(\text{theory})}$ model with simple (linear, quadratic) dependence on model parameters, e.g.

$$P_{\text{signal}}^{(\text{theory})}(k,\mu,z;\vec{\Theta}) = \sum_{i} \theta_{i} P_{i}^{(\text{theory})}(k,\mu,z)$$

2. Simulate sky maps from each theory template

theory templates

1. Choose $P_{signal}^{(theory)}$ model with simple (linear, quadratic) dependence on model parameters, e.g.

$$P_{\rm signal}^{\rm (theory)}(k,\mu,z;\vec{\Theta}) = \sum \theta_i P_i^{\rm (theory)}(k,\mu,z)$$

i

- 2. Simulate sky maps from each theory template
- 3. Propagate maps through sim+analysis pipelines, to obtain *obs. templates*

NB: Pipeline must be linear!

theory templates

3. Propagate maps through sim+analysis pipelines, to obtain *obs. templates*

4. Observed power spectrum is linear combination of obs. templates

$$P_{\rm signal}^{\rm (obs)}(k,\mu;\vec{\Theta}) = \sum_i \theta_i P_i^{\rm (obs)}(k,\mu)$$

5. Sample likelihood to obtain posterior for $\vec{\Theta}$

25

$$P_{21cm}^{(theory)}(k,\mu,z) = T_b(z)^2 \left[b_{HI}(z) + f\mu^2 \right]^2 D_{FoG}(k\mu,z)^2 \\ \times \left[\alpha_{NL} P_m^{(nonlin)}(k,z) + (1 - \alpha_{NL}) P_m^{(lin)}(k,z) \right]$$

Matter power spectrum; α_{NL} interpolates between linear and nonlinear models (at fixed cosmology)

IM25

- b_{HI} = linear HI bias
- $f\mu^2$ = redshift-space distortions on large scales ("kaiser")

 D_{FoG} = RSD on small scales ("Finger of God") $\rightarrow 1 + \frac{1}{2}k^2\mu^2\sigma_{FoG}^2$

= mean 21cm brightness temperature, $\propto \Omega_{HI}$

Parameter sensitivity: Ω_{HI} and b_{HI}

Increases the overall amplitude

Parameter sensitivity: σ_{FoG} and α_{NL}

Scale dependence

 $P_{21cm}^{(theory)} \propto \Omega_{HI}^2 [b_{HI} + f\mu^2]^2$

LIM25

 $P^{(theory)}_{21cm} \propto \Omega^2_{HI} [b_{HI} + f\mu^2]^2$

"Signal-only **simulations** with realistic error bars"

IM25

"Signal-only **simulations** with realistic error bars"

b_н

M 2 5

 $\Omega_{HI} \times 10^3$

M 2 5

LIM25

Reality check: Does our model hold up?

IM25

In progress...

- Verifying that 4-parameter model is flexible enough to fit IllustrisTNG HI power spectrum
- Verifying that TNG values of Ω_{HI} , b_{HI} are recovered from simulated parameter inference
- Ensuring that posteriors are unbiased if extended power spectrum model is used (e.g. including shot noise, FoG from intragalaxy HI motions)

- We use simulation-based pipeline to bridge theoretical HI power spectrum model to CHIME observations
- $^{\rm O}$ Our model includes $\Omega_{HI}, \, b_{HI}$, and nuisance parameters α_{FoG} and α_{NL} characterizing small-scale physics.
- $^{\rm O}$ Strong degeneracy exists between $~\Omega_{HI}$ and b_{HI} , limiting individual parameter constraints.
- $^{\rm O}$ We address this by constraining the amplitude parameter A_{HI} , which remains well-determined.
- Model accuracy is verified through systematic validation against IllustrisTNG hydrodynamical simulations.

Thank You

