Progress towards measuring HI auto-power spectrum with CHIME

Arnab Chakraborty Post-Doc at McGill University

Outline

Improvements in the Data processing pipeline

Future Outlook

a collaboration between

Dominion Radio Astrophysical Observatory

with partners at

Massachusetts Institute of Technology

WestVirginiaUniversity,

Canadian Hydrogen Intensity Mapping Experiment (CHIME)

- Transit radio interferometer (no moving parts).
- 4 cylindrical reflectors, 20m x 100m each.
- Observe between 400-800 MHz, corresponding to redshift of 2.5-0.8 at the 21 cm line.
- 1024 dual polarized antennas.
- Maps the northern radio sky every day.

Beam: ~120 x 2 deg

Map of the sky at a single frequency using all baselines only

Map of the sky at a single frequency using inter-cylinder baselines only

The map constructed using inter-cylinder baselines only, which resolve out diffuse Galactic emission and leaving primarily emission from extragalactic point sources.

Delay power spectrum of the CHIME map : Variance over RA

Delay power spectrum of the CHIME map : Variance over RA

Progress on data analysis to clean the CHIME data to measure Auto-Power Spectrum

Data cube from cross-corr : 2022

Progress on data analysis to clean the CHIME data to measure Au

Improved analysis pipeline to measure the auto-powerspectrum of HI signal with CHIME

Analysis pipeline

RFI masking algorithms

- Masking transient RFI
- Identify outliers in the "system radiometer test"
- Identify outliers in FG filtered data $\chi^2 \text{test}$
- Flag time-ranges with large amount of rainfall.
- Identify bad days and remove it from stack.

Foreground filtering the raw time series data of individual days

RFI flagging : Radiometer test

· Identify outliers in the "system radiometer test":

$$R_{t\nu} = \Delta t \Delta \nu \frac{\sum_{ij} \text{Var} \left(V_{ij,t\nu} \right)}{\sum_{ij} V_{ii,t\nu} V_{jj,t\nu}} \underbrace{\sum_{ij} V_{ii,t\nu} V_{jj,t\nu}}_{\text{Expectation for variance based on radiometer equation}}$$

RFI flagging : Radiometer test

· Identify outliers in the "system radiometer test":

$$R_{t\nu} = \Delta t \Delta \nu \frac{\sum_{ij} \text{Var} \left(V_{ij,t\nu} \right)}{\sum_{ij} V_{ii,t\nu} V_{jj,t\nu}} \leftarrow \text{Expectation}$$

ample variance from ven-odd difference at 30 msec

Expectation for variance based on radiometer equation

Systematics : Subtle issues with data averaging

Integrating over visibilities that are changing as a function of time using frequency-dependent weighting leaks foreground power to high delays.

Systematics : Subtle issues with data averaging

Integrating over visibilities that are changing as a function of time using frequency-dependent weighting leaks foreground power to high delays.

Solution : We take the **timestream data**, then beamformed along declination axis for each east-west baseline separation and use a constant FG filter cutoff for all declination and all baselines

Foreground residual and quantification of residual error: Beamformed to CYG-A

Haochen Wang (MIT)

- Bandpass gains from 11 bright point sources
- **HyFoReS:** estimates gains by cross-correlating low-delay with high-delay data

• Reduced gain fluctuations by ~ a factor of 2 **Daily Foreground filter pipeline :** Change the pipeline framework and write many new tasks

Data available after flagging in 2019

Progress on data analysis to clean the CHIME data to measure Auto-Power Spectrum

Data from cross-corr : 2022

Data after new processing: 2025

After all these improvements we get this clean map, average of 94 nights from 2019 20

Applying a Spatial Mask for very bright point sources in the sky

Comparison of data with noise after FG filtering and applying mask

• We compare the data and thermal noise after applying FG filter and pixel mask. The thermal noise is estimated using fast-cadence method.

Discovery of HI absorption system in the Cosmology data

Credit: Seth Siegel

Cross-Correlation : Stacking over 100 MHz sub-band

2D Cylindrically averaged power spectrum

Spherically averaged Power Spectrum at redshift ~ 1.16

Statistical Tests	Checks
 Varying the fluxcut of sources to generate mask - mainlobe mask. If we see FG residual, then lowering the fluxcut will also lower the power spectrum. So we change a varying power as a function of fluxcut. 	×
• If we do not see FG residual: then there should not be any varying power as a function of fluxcut	
 Varying the fluxcut of sources to generate mask - sidelobe mask. We may expect to see sidelobes of faint source (not seen in the map). So lowering the fluxcut of sidelobe mask will also lower the power spectrum. If we do not see any such variation in the power with fluxcut of sidelobes, then we can rule out the hypothesis of sidelobe FG leakage. 	× ~
 Divide the RA range into two separate RA bins If systematic is localized in LSTs, then that will show up in power spectrum. Also, FG sky is changing as a function of LST, but HI is same. So, if it is FG, then we will expect different power at different bins. 	×
• If it is not systematic or FG residual, then we should expect consistent power spectrum in each bin	~
 Power spectrum of even-odd partitions The transient RFI and day-to-day change will remain in this difference and will give excess variance in the power spectrum 	27
• However, cosmological signal should drop out, and we should see power spectrum consistent with noise	· ·

Jackknives: Powerspectrum of (Even - Odd)

Polarization consistency : Stokes-I and Stokes-Q

Polarization consistency : XX and YY pol

190 - 265 deg

RA divisions: RA range of the NGC region is divided into two independent RA bins

Baselines cuts: including 3cyl baselines vs 2-cyl baselines vs 1-cyl baselines

We do not include intra-cyl or 0-cyl separation baselines in this analysis

Baselines cuts: including 3cyl baselines vs 2-cyl baselines vs 1-cyl baselines

Summary

- CHIME is mapping large-scale structure from z = 0.8 to 2.5 using 21cm intensity mapping
- We have reported detection of cosmological 21-cm signal by cross-correlating CHIME map with eBOSS catalogs.
- We have identified and removed bulk of systematics from our data and made a cleanest map of the sky.
- We made progress in measurement of auto-power spectrum with CHIME. First result is coming soon.....
- We made many statistical tests to rule out systematics contamination, currently work is going on in template fitting to the data.

Additional slides

Future directions towards getting BAO scale back

Scales Probed in this analysis

HyFoReS signal loss estimate: HI signal stacked on eBOSS QSO

Signal loss : with and without HyFoRes

Improved RFI flagging, bad data identification and removal of systematics

- "Stokes I" Masking:
 - Apply high-pass filter in time to remove background sky, beamform, identify outliers
 - Apply low-pass filter in time, average 2 and 3 cylinder separation visibilities, identify outliers

Improved RFI flagging, bad data identification and removal of systematics

- "Stokes I" Masking:
 - Apply high-pass filter in time to remove background sky, beamform, identify outliers
 - Apply low-pass filter in time, average 2 and 3 cylinder separation visibilities, identify outliers

71.23% total flagging for this particular night

RFI flagging :

- test

· Identify outliers in aggressively-delay-filtered visibilities

 $\chi_{t\nu}^{2} = \sum_{ij} \frac{|\sum_{\nu'} H_{\nu\nu'} V_{ij,t\nu'}|^{2}}{\underset{\text{t< Simin}}{\text{med}} \left[\text{Var}(V_{ij,t\nu}) \right]} \checkmark$

Dayenu filtered visibilities with $\tau_{cut} = 400$ nsec

Sample variance from even-odd difference at 30 msec, smoothed with 5 min rolling median

Systematics : BeamFormed to VIR_A

Systematics : BeamFormed to VIR_A

HyFoRes : To remove residual bandpass error

HyFoRes : To remove residual bandpass error: Implementation

- We use a low-pass filter to the FG template before cross-correlation to remove noise bias at high delay
- We also subtract noise cross-talk of both FG and signal template before cross-correlation

Histogram of bin values in each 1D k-modes

Systematics : Subtle issues with data averaging

Integrating over visibilities that are changing as a function of time using frequency-dependent weighting leaks foreground power to high delays.

Solution : We take the **timestream data**, then beamformed along declination axis for each east-west baseline separation and use a constant FG filter cutoff for all declination and all baselines

Radio Sky as seen by CHIME every night

CHIME data processing

- Data from 2019
- Roughly 100 nights after throwing away potential bad nights.
- Regrid the data and make a stack of 100 nights.

Dominion Radio Astrophysical Observatory (DRAO)

Canadian Hydrogen Intensity Mapping Experiment (CHIME)

- Transit radio interferometer (no moving parts).
- 4 cylindrical reflectors, 20m x 100m each.
- Observe between 400-800 MHz, corresponding to redshift of 2.5-0.8 at the 21 cm line.
- 1024 dual polarized antennas.
- Maps the northern radio sky every day.

Beam: ~120 x 2 deg