Simulation framework for HI power spectrum measurement with CHIME

Shabbir Shaikh (ASU) CHIME Collaboration

1

Outline

- Method for CHIME HI power spectrum interpretation
 - Simulation framework this talk
 - Parameter inference framework talk by Albin Joseph
 - Application to data currently in progress
- Simulation of HI maps
- Power spectrum templates
- Summary

Simulations: Overview

Purpose: connect astrophysical model parameters to data power spectrum

We model the signal power spectrum using a set of "power spectrum templates" which account for CHIME-specific instrument characteristics & analysis choices.

$$P_{\text{signal}}^{(\text{obs})}(k,\mu,z;\vec{\Theta}) = \sum_{i} \theta_{i} P_{i}^{(\text{obs})}(k,\mu,z)$$

Similar to method in <u>The CHIME</u> <u>Collaboration 2022</u>, used for HI and galaxies stacking analysis.

Map simulation requirements for CHIME

- Include required k-modes
 - \circ k_{par} = 0.37 to 1.58 h/Mpc
 - \circ k_{perp} = 0.08 to 0.40 h/Mpc
- Maps for different model parameters (required for the template method)
- Simulate multiple realizations
- \Rightarrow <u>CORA</u>
 - Gaussian maps of LSS tracers

Small width of CHIME channels in comoving distance

⇒ Limber approximation for $P_m(k) \rightarrow C_l$ not appropriate.

CORA Step-1: Simulation of LSS maps

Comparison of CORA output with a separate code

Angular power spectrum of matter overdensity

- We performed tests of convergence of CORA outputs.
- Angpow (<u>Campagne et al., 2017</u>): a code to obtain C_l for the desired LSS tracer (with different integration techniques than those used in CORA).
- We find sub-percent level agreement between the output of the two codes.

Gaussian maps of density contrast (δ) and potential (ϕ)

Matter density contrast (δ)

Gravitational potential (ϕ)

 $\delta_{\rm m}~(\nu = 707.8125~{\rm MHz}, z = 1.007)$

 ϕ (v = 707.8125 MHz, z = 1.007)

CORA Step-2: Simulation of δT_{HI} maps

$\delta T_{\rm HI}$ maps: angular and LoS fluctuations

HI power spectrum [P(k)] templates for different P_m(k)

- Each P(k) template is obtained from a set of HI maps by passing it through CHIME analysis pipeline.
- Total time for one pipeline run to go from matter power spectrum to HI power spectrum: around 9 CPU hours (48 core, 187 GB node)
- The template method is an efficient approach requiring fewer pipeline runs.

Summary

- Gaussian simulations combined with template method is an efficient way to include the effect of instrument transfer function and analysis choices.
- CORA provides Gaussian δT_{HI} maps with sufficient accuracy.
- Modelling of clustering is approximate, however, it captures the effect of parameters of interest as required by the template method
- When required, incorporating more accurate modelling is possible
 - \circ At the power spectrum level \rightarrow highlighted in Albin's talk
 - At the map level, to include non-Gaussianity \rightarrow see Tristan's talk

