

ARGELANDER-INSTITUTE FOR ASTRONOMY – UNIVERSITY OF BONN

Constraining the **[CII] Luminosity Function** and the nature of **Dark Matter** with the LIM power spectrum

Based on: Marcuzzo et al., 2025 (arXiv:2504.06266) and Marcuzzo et al., in prep.

Elena Marcuzzo

in collaboration with:

Cristiano Porciani, Emilio Romano-Díaz, Prachi Khatri, Azadeh Moradinezhad, Matteo Viel

LIM25 – Line Intensity Mapping Conference

LAPTh – Annecy (France), 5th June 2025

Projects overview

LUMINOSITY FUNCTION

we focus on the astrophysical properties of galaxies, investigating the power of LIM in determining the shape of the [CII] LF

> Statistics: [CII] power spectrum monopole

> > Method:

Bayesian inference to constrain the moments and parameters of the LF

Marcuzzo et al., 2025

DARK MATTER

we study whether LIM is effective in distinguishing **ΛCDM** and **ΛWDM** cosmological scenarios

Statistics: [CII] power spectrum monopole

Method:

Bayesian inference to constrain the mass of the DM particles

Marcuzzo et al., in prep.

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Modelling the [CII] power spectrum

Modelling the [CII] power spectrum

Projects overview

LUMINOSITY FUNCTION

we focus on the astrophysical properties of galaxies, investigating the power of LIM in determining the shape of the [CII] LF

> Statistics: [CII] power spectrum monopole

> > Method:

Bayesian inference to constrain the moments and parameters of the LF

Marcuzzo et al., 2025

DARK MATTER

we study whether LIM is effective in distinguishing **ΛCDM** and **ΛWDM** cosmological scenarios

Statistics: [CII] power spectrum monopole

Method: Bayesian inference to constrain the mass of the DM particles

Marcuzzo et al., in prep

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

ii

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

3

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Projects overview

LUMINOSITY FUNCTION

we focus on the astrophysical properties of galaxies, investigating the power of LIM in determining the shape of the [CII] LF

> **Statistics:** [CII] power spectrum monopole

Method: Bayesian inference to constrain the moments and parameters of the LF

Marcuzzo et al., 2025

DARK MATTER

we study whether LIM is effective in distinguishing **ΛCDM** and **ΛWDM** cosmological scenarios

Statistics: [CII] power spectrum monopole

Method:

Bayesian inference to constrain the mass of the DM particles

Marcuzzo et al., in prep.

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

iii

Marcuzzo et al., in prep.

The effect of warm dark matter

DM particles with non-negligible thermal velocities \rightarrow small scale suppression \rightarrow less (or absence of) small haloes

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Marcuzzo et al., in prep.

The effect of warm dark matter

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

6

Marcuzzo et al., in prep.

05/06/2025

6

The effect of warm dark matter

DM particles with greater thermal velocities \rightarrow small scales suppression \rightarrow less (or absence of) small haloes

21cm studies: Stiwell et al. (2014), Carucci et al. (2015)

Elena Marcuzzo

Marcuzzo et al., in prep.

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

05/06/2025 7

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Marcuzzo et al., in prep.

Priors for m_{WDM}:

- » $\pi \propto m_{
 m WDM}^{-eta}$, $eta \in [0,1)$
- » Jeffreys (non-informative) prior

we get the

1D marginalised posteriors

and compute the

95% credibility levels on m_{WDM}

Elena Marcuzzo

Constraining the [CII] LF and the nature of DM with the LIM power spectrum

Marcuzzo et al., in prep.

05/06/2025

10

Main limitation of our analysis

Low-mass haloes/faint galaxies give a negligible contribution to the LIM power spectrum

Elena Marcuzzo

Assuming 'our' next-generation DSS survey, the LIM power spectrum of the [CII] emission line can be used to **constrain the shape of the luminosity function** and **probe dark matter models**:

- ✓ The clustering and shot noise components are constrained with a signal to noise ~3 and ~10 in the pessimistic and optimistic scenarios, respectively.
- ✓ By deriving constraints on LF moments we find that (L²) is constrained with a signal to noise ~0.5 (pessimistic) and ~14 (optimistic), but with increasing precision when having wider survey area and/or higher sensitivity.
 Viceversa, (L) remains highly uncertain mainly due to degeneracy with RSDs → statistical uncertainty of ~50% even under the most optimistic LF and survey assumptions.
- The LF normalisation, Φ^{*}, and break, L^{*}, are well constrained, while the faint-end slope, α, remains unconstrained unless area and/or sensitivity are significantly increased.
- ✓ CDM and WDM can be distinguished up to m_{WDM} ≈ 3 keV, but only in the scenario with high LF and wide sky coverage.

Many thanks for your attention!

Elena Marcuzzo

BACKUP SLIDES

R=100

A

1.5

-1.0

-0.5

0.20

-0.15

0.10

-0.05

A

Useful formulae

$$egin{split} P(k,\mu,z) &= P_{ ext{clust}}(k,\mu,z) + P_{ ext{shot}}(z) = ar{I}_
u^2(z) \, [b(z) + f(z) \, \mu^2]^2 \, \mathcal{D}(k,\mu,z) \, P_{ ext{m}}(k,z) + rac{ar{I}_
u^2(z)}{ar{n}_{ ext{eff}}(z)} \ \mathcal{D}(k,\mu) &= \left[1 + rac{(k\mu\sigma)^2}{2}
ight]^{-2} \end{split}$$

 $P_{\rm obs}(k,\mu,z) = P(k,\mu,z) W_{\perp}(k,\mu) W_{\parallel}(k,\mu)$

$$P_{0}(k,z) = \frac{\int_{k_{\rm f}^{\parallel}/k}^{\min(1,\,k_{\rm N}^{\parallel}/k)} P_{\rm obs}(k,\mu,z) \,\mathrm{d}\mu}{\int_{k_{\rm f}^{\parallel}/k}^{\min(1,\,k_{\rm N}^{\parallel}/k)} \,\mathrm{d}\mu} \qquad \qquad \sigma_{P_{0}}(k) = \frac{P_{0}(k) + P_{\rm WN}}{\sqrt{N_{\rm m}(k)}} \qquad \qquad N_{\rm m}(k) = \frac{\min(k,\,k_{\rm N}^{\parallel})\,k\,\Delta k\,V_{\rm surv}}{4\pi^{2}}$$

$$\begin{aligned} b(z) &= \frac{1}{\bar{\rho}_L(z)} \int_0^\infty \eta_1(M, z) \, b_{\rm h}(M, z) \, \frac{\mathrm{d}\bar{n}_{\rm h}}{\mathrm{d}M}(M, z) \, \mathrm{d}M \\ \bar{n}_{\rm eff}^{-1}(z) &= \frac{1}{\bar{\rho}_L^2(z)} \int_0^\infty \eta_2(M, z) \, \frac{\mathrm{d}\bar{n}_{\rm h}}{\mathrm{d}M}(M, z) \, \mathrm{d}M \end{aligned} \right\} \quad \text{where} \quad \bar{\rho}_L(z) &= \int_0^\infty \eta_1(M, z) \, \frac{\mathrm{d}\bar{n}_{\rm h}}{\mathrm{d}M}(M, z) \, \mathrm{d}M \\ \eta_n(M, z) &= \int_0^\infty L^n \, \phi(L|M, z) \, \mathrm{d}L \end{aligned}$$

 $egin{aligned} &\pi \propto m_{ ext{WDM}}^{-eta} \;,\;\; eta \in [0,1) \ &\pi \propto \sqrt{\det F_{ij}} \;,\;\; F_{ij} = \sum_k rac{\partial P(k)}{\partial heta_i} rac{\partial P(k)}{\partial heta_j} rac{1}{\sigma_{P(k)}^2} \end{aligned}$

$$\begin{split} P_{\rm WDM}(k) &= T^2(k) \, P_{\rm CDM}(k) \,, \\ \text{where (e.g. Viel et al. 2005)} \\ T(k) &= \left[1 + (\alpha k)^{2\nu} \right]^{-5/\nu} \,, \\ \text{with } \nu &= 1.12 \text{ and} \\ \alpha &= 0.049 \, \left(\frac{m_{\rm WDM}}{1 \, \rm keV} \right)^{-1.11} \, \left(\frac{\Omega_{\rm WDM}}{0.25} \right)^{0.11} \, \left(\frac{h}{0.7} \right)^{1.22} \, h^{-1} \, \rm Mpc \,. \end{split}$$

We also consider the possibility that DM is made of ultra light bosons with kpc-scale De Broglie wavelengths, commonly dubbed as "fuzzy DM" (FDM, Hu et al. 2000). In this case, we associate the mass of the FDM particles, m_{FDM} , with the parameter α in Eq. (22) through the relation

$$k_{0.5} = 4.5 \left(\frac{m_{\rm FDM} c^2}{10^{-22} {\rm eV}}\right)^{4/9} {\rm Mpc}^{-1}$$
 (25)

where $T^2(k_{0.5}) = 0.5$.