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On today’'s agenda

In the era of multiple spectral lines, what are some
interesting opportunities beyond “just” cross
correlations?

How can we look past astrophysics during cosmic
dawn and reionization to place constraints on
fundamental cosmological parameters?



Clues from @

Sarkar, lles, AL (2025), in prep.

Dr. Debanjan Sarkar Ella lles
McGill University McGill undergrad —> 7?77



't no longer seems crazy to imagine an era
of N lines covering the same redshift...
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...and with this prospect comes new
opportunities

_ a ac
P = Beane et al. (2019)



...and with this prospect comes new
opportunities

P _ da ac
— Beane et al. (2019)

Do the relevant
assumptions (linear
bias, strong inter-line
correlation) hold?
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Data-driven way to test the assumptions
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Data-driven way to test the assumptions
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Data-driven way to test the assumptions
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Under many reasonable
scenarios this works.
But when does this fail?
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Doesn’t matter




Model (LIMpy): [, = a(SFR)ﬁ

Doesn't matter the more
Q ~ 1 whenit’s
suppose to be




Model (LIMpy): [ = a(SFR)ﬁ

False negative when the target auto
spectrum is very different from the
other three (similar) lines
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Model (LIMpy): [ = a(SFR)ﬁ
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False positive when the four lines (a,b,c,d)
are in two groups (a,b), (c,d) that are internally
similar but different from each other
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On today’s agenda

In the era of multiple spectral lines, what are some
interesting opportunities beyond “just” cross
correlations?

Ratios of cross-power spectra can be interesting,
both for signal estimation and data-driven null tests

How can we look past astrophysics during cosmic
dawn and reionization to place constraints on
fundamental cosmological parameters?




An Alcock-Paczynski lest
on Relonization Bubbles
for Cosmology

Thélie, Del Balso, Mufioz, AL (2025), Phys. Rev. D 111, 123501

Dr. Emilie Thélie Franco Del Balso
UT Austin McGill undergrad —> 7?77









Is this what we
actually see?




Is this what we
actually see?

Remember...
D,(z) and H(z) have

different dependencies on
cosmological parameters



Converting angles and redshifts to comoving
distances requires cosmological assumptions

~ Correct cosmology N Wrong cosmology

(e.g. elongation)
Converting
angles to
distances
— “‘ ]

Wrong cosmology
(e.g. contraction)

Standard sphere as ‘ '
\observed on the sky \ J




Standard spheres

will only appear spherical if we have a correct
cosmological mapping between observer
coordinates and theory coordinates, which means
we can work in reverse and

constrain cosmological
parameters by testing for
sphericity



An actual
reionization

\ model

We don't have standard spheres!
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After
foreground
filtering

We don't have standard spheres!



-iltering the data can get rid of contaminants,
but destroy lots of information....
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-iltering the data can get rid of contaminants,
but destroy lots of information....
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....but perhaps machine learning can
save the day!

Filtered

e Gagnon-Hartman, Cui, Kennedy, AL, Ravanbakhsh
0.4 (2021) MNRAS 504, 4716
e Kennedy, Colaco Carr, Gagnon-Hartman, AL,
Mirocha, Cui (2024) MNRAS 529, 3684

Predicted ionization



An actual
reionization

\ model

After
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filtering

We don't have standard spheres!



An actual
reionization

\ model

After
foreground
filtering

ML reconstruction\
of ionized bubbles

We don't have standard spheres!




Individual bubbles are definitely
not spherical...
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..but our Universe has no preferred direction, so
the welird shapes will be randomly oriented and
stacks of bubbles should be statistically spherical
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Measuring the sphericity (or lack thereof)
constrains the parameter combination
Xl < DyH
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On today’s agenda

In the era of multiple spectral lines, what are some
interesting opportunities beyond “just” cross
correlations?

Ratios of cross-power spectra can be interesting,
both for signal estimation and data-driven null tests

How can we look past astrophysics during cosmic
dawn and reionization to place constraints on
fundamental cosmological parameters?

Use ML to recover bubbles that can be stacked. Stacks
will only appear spherical if our cosmological parameter
(and therefore distance measures) are correct
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The strongest observational effect Is
that our measurements are strongly
contaminated by

foreground emission

that Is ~104 to 10° times brighter
than the cosmological signal



A huge portion is not what you
want....

....and just a tiny portion is what
youre interested In



Filtering In Fourier space may
be a solution...
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Filtering in Fourier space may
pbe a solution...

Clean-ish window

Line of sight Fourier

Strong foregrounds

Transverse Fourier k|
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These maps can be

guide map for galaxies!

Kennedy, Carr, Gagnon-Hartman, AL et al. (2024)

MNRAS 529, 3684

used as a

Jacob Kennedy
Former McGill undergrad



100 LY Or it we have already found

the galaxies, we can improve

0 o the reconstruction of bubbles!

100
With the help  Without using
of galaxies galaxies

Franco del Balso



How can this possibly even work™”!

Input

Black Box

Qutput




How can this possibly even work™”!
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How can this possibly even work™”!
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Machine learning isn't magic. It can't get
information that isn't there.




Gaussian Fields
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Gaussian Fields
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Fourier modes are
uncorrelated with one another




Gaussian Fields

Fourier modes are
uncorrelated with one another

Line of sight Fourier k;
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Transverse Fourier k;

For a Gaussian field, if
these modes are filtered
out, they are gone forever



Non-Gaussian Fields




Non-Gaussian Fields

Fourier modes are correlated
with one another




Line of sight Fourier kj

Non-Gaussian Fields

Clean-ish window

Strong foregrounds
1 I

Transverse Fourier k;

For a non-Gaussian field, if these
modes are filtered out, there is
still some hope for reconstructing
them from the measured modes

Fourier modes are correlated
with one another



How can this possibly even work™”!
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Machine learning isn't magic. It is using the
non-Gaussianity In the signal to restore images



