

Delaney A. Dunne LIM25 04/06/2025

3D Stacking as a LIM Statistic

LIM Benefits from Joint Analyses with Galaxy Surveys

- Improved sensitivity
- Robustness against systematics and foregrounds
- Multiple tracers help in understanding galaxy formation and evolution

[Kovetz et al. 2017 via Breysse, Scientific American]

There are a Variety of Joint Analyses Available

[Chung et al. 2019]

Cross-correlation

Deconvolved Distribution Estimator (VID)

There are a Variety of Joint Analyses Available

- How would you optimize an experiment for stacking?
- Where is the stacked signal coming from?
- What can the stack alone tell us about astrophysics? Cosmology?

What is 3D Stacking?

• Galaxy catalogues can be used as **tracers** of large-scale structure

Simulated Data Cube

What is a Stacking Analysis?

 Galaxy catalogues can be used as tracers of large-scale structure

 Voxels containing a bright catalogue object likely contain an excess of LIM emission

What is a Stacking Analysis?

3D Stacking is a Simple Joint Analysis

- Galaxy catalogues can be used as tracers of large-scale structure
- Voxels containing a bright catalogue object likely contain an excess of CO emission
- Averaging these voxels together will reduce noise

- Galaxy catalogues can be used as tracers of large-scale structure
- Voxels containing a bright catalogue object likely contain an excess of LIM emission
- Averaging these voxels together will reduce noise
- Cutouts can then be analyzed for large-scale fluctuations

Simulated Data Cube

- Galaxy catalogues can be used as tracers of large-scale structure
- Voxels containing a bright catalogue object likely contain an excess of LIM emission
- Averaging these voxels together will reduce noise
- Cutouts can then be analyzed for large-scale fluctuations
- A smaller aperture is summed over to do final **statistics**

Simulated Data Cube

Joint Simulations

Simulations were developed using COMAP x HETDEX as an example

Х

COMAP

LIM Experiment CO(1-0) HETDEX

Blind Galaxy Survey Lyα

Delaney A. Dunne | delaneydunne.github.io

We simulate a futuristic version of COMAP for this analysis

[**Dunne** et al. 2025]

What are the ideal experimental parameters for stacking?

Stack sensitivity improves as $\sqrt{N_{obj}}$

Velocity uncertainty in the galaxy catalogue attenuates signal...

[**Dunne** et al. 2025]

Velocity uncertainty in the galaxy catalogue attenuates signal...

Delaney A. Dunne | delaneydunne.github.io

... but can be overcome with large numbers of objects

Delaney A. Dunne | delaneydunne.github.io

LIM experiment parameters that improve the (high-k) power spectrum improve the stacks

Where is the stacked signal coming from and what can the stack tell us?

[**Dunne** et al. 2025]

Delaney A. Dunne | delaneydunne.github.io

The scale of the signal is set by clustering, not the beam

[**Dunne** et al. 2025]

We tested three different models for CO emission

Either extreme provided better S/N than the 'average' model

We tested three different galaxy catalogue models

The stack signal increases with catalogue tracer bias

The stack signal increases with catalogue tracer bias

Applications of stacking with COMAP

We first stacked on COMAP S1 x eBOSS

243 quasars across the 3 COMAP fields

We will be performing COMAP S2 + HETDEX stacks

[**Dunne** et al. 2025b (*in prep*.)]

Delaney A. Dunne | delaneydunne.github.io

We will explore combining stacking with cross-correlation

Conclusions

Stacking on LIM data measures galaxy populations in aggregate

The ideal galaxy catalogue for stacking has as many galaxies as possible

Catalogues of higher-mass halos give better stack S/N

Extra Slides

Simulated Data Cube

A suite of multi-tracer simulations for LIM

1. Use the mass-peak patch algorithm (Stein et al. 2019) to generate a catalog of DM halos

2. Paint luminosities for two different galaxy tracers onto each DM halo

4. Convert the LIM (CO) luminosities into a fluctuation map

4. Convert the LIM (CO) luminosities into a fluctuation map

8. Make observability cuts to create a synthetic galaxy catalog

8. Make observability cuts to create a synthetic galaxy catalog

4. Add (correlated) scatter to each set of luminosity values

Simulation pipeline workflow

The shape of the signal is set by clustering, not the beam

How does improved resolution improve stack S/N?

Either extreme provides better S/N than the 'average' model

Higher-mass tracers are both more biased and brighter themselves

[**Dunne** et al. 2025]

The correlation between the two tracers is not that important

The correlation between the two tracers is not that important

Interlopers

