HYACINTH! HYdrogen And Carbon chemistry in the INTerstellar medium in Hydro simulations

> Emilio Romano-Díaz Prachi Khatri & Cristiano Porciani

STAR FORMATION ACROSS COSMIC TIME

MOLECULAR GAS ACROSS COSMIC TIME

Molecular gas

density

We need simulations to complement these observations.

Simulations that model:

✓ The formation of galaxies in a cosmological context

 ✓ Follow the evolution of molecular gas in galaxies. || H₂ and other molecules

Model chemistry

COSMOLOGICAL SIMULATIONS OF GALAXY FORMATION

Modelling galaxy formation is a multiscale and multiphysics problem

DENSITY STRUCTURE OF THE ISM

The finite resolution of simulations misses the **intricate density structure** (and other properties) of the ISM, important for modelling chemical abundances and emission.

DENSITY STRUCTURE OF THE ISM

The MARIGOLD simulations

TEST OF CHEMICAL ABUNDANCES – Comparison of equilibrium abundances using the slab test

- 19 chemical reactions
- Additional chemical species – He⁺ and HCO⁺ -- important for CO chemistry
- 29 chemical reactions in total
- ~3.3x computational time

NL99= Nelson & Langer 1999 G17 = Gong et al. 2017 PDR code from Tielens & Hollenbach 1985

APPLICATION: POST-PROCESSING

➤ A RAMSES simulated galaxy at z=2.5 from Tomassetti+15 including H₂ chemistry and Lyman-Werner RT.

Compute Eq. abundances: H₂, CO, C, and C⁺ using HYACINTH.

- ➤ Metallicity from simulation
- ≻ UV flux χ from simulation
- Different options for the cosmic-ray ionization rate ζ_H
 - constant
 - linear scaling with χ
 - quadratic scaling with χ

COMPARISON WITH OBSERVATIONS

THE MARIGOLD SUITE: COSMOLOGICAL SIMULATIONS USING THE SUB-GRID MODEL HYACINTH

Follow galaxy formation & evolution in a cosmological context (DM, gas & stars til z=3)

> Embed HYACINTH into RAMSES to track the abundances of H_2 , CO, C, and C⁺ in addition to the total gas.

THE MARIGOLD SUITE

Simulation	$L_{\rm box}$	N _{DM}	Δx^{\min}	$m_{\rm DM}$	m_*
	(Mpc)		(pc)	(M_{\odot})	(M_{\odot})
M25	25	1024^{3}	32	5×10^{5}	7×10^{3}
M50	50	1024^{3}	64	4×10^{6}	6×10^{4}

Sufficiently low particle mass to resolve low-mass galaxies

High spatial resolution to model chemistry and emission properties of galaxies

Large enough volume to study statistical properties of galaxies

The MARIGOLD simulation

COSMIC MOLECULAR GAS DENSITY

The MARIGOLD simulations

STATISTICAL PROPERTIES OF GALAXIES

Distribution of simulated galaxies aligns with empirical relations

MARIGOLD

How does $\alpha_{[CII]}$ change with galaxy properties?

PERFORMANCE OF PCA-BASED RELATIONS

[CII]-SFR RELATION

MARIGOLD & LIM

- Our results can be used together with Halo Abundance Matching (HAM) to populate large Nbody simulations for LIM purposes:
- l halo l galaxy
- No scatter in LF_{C^+} at fixed mass
- CLF: $\phi(L|M,z)$ monotonic function

(Elena Marcuzzo's talk, tomorrow)

CONCLUSIONS

HYACINTH – a sub-grid model for hydrogen and carbon chemistry in hydro simulations.

>HYACINTH can be used as a post-processing tool

- ➤The MARIGOLD simulations cosmological simulations for tracing molecular gas & Crelated species in galaxies.
- ➤ Simulated cosmic H₂ density in agreement with observational estimates.
- > [C ii] $M_{\rm mol}$ correlation
 - Evolves over time
 - Is sensitive to SFR

Modelling molecular gas and its tracers with HYACINTH

THE FUTURE:

≻ The future is bright! ☺

≻...

- ≻ CO analysis: RT -> line emission & LF -> LIM
- ≻Include neutral and ionized hydrogen (HI & HII) within HYACINTH
- Include massive galaxies' contributions -> Constrained Realizations & zoom-ins

Modelling molecular gas and its tracers with HYACINTH

z	$\log(\phi_* /\mathrm{Mpc}^{-3}\mathrm{dex}^{-1})$	$\log(L_*/\mathrm{L}_{\odot})$	α	β	$\Delta \text{DIC}^{(a)}$	$\Delta \text{DIC}^{(b)}$
7	$-1.84^{+0.15}_{-0.15}$	$6.44_{-0.11}^{+0.10}$	$-1.54^{+0.06}_{-0.05}$	$-2.75^{+0.08}_{-0.09}$	105	107
6	$-1.26^{+0.12}_{-0.12}$	$6.20^{+0.10}_{-0.10}$	$-1.24^{+0.06}_{-0.06}$	$-2.30^{+0.04}_{-0.05}$	222	223
5	$-1.52^{+0.13}_{-0.13}$	$6.72^{+0.11}_{-0.11}$	$-1.42^{+0.03}_{-0.03}$	$-2.31^{+0.05}_{-0.05}$	159	161
4	$-0.91\substack{+0.08\\-0.07}$	$7.03^{+0.04}_{-0.04}$	$-1.28^{+0.01}_{-0.01}$	$-2.57^{+0.05}_{-0.05}$	449	451
3	$-1.00^{+0.08}_{-0.08}$	$7.37^{+0.04}_{-0.04}$	$-1.22^{+0.01}_{-0.01}$	$-2.65^{+0.05}_{-0.05}$	174	176

Table 2: Best-fit parameters to the LF for the DPL function given in Eq. (2).

Notes. The last two columns show the values of ΔDIC^a and ΔDIC^b between the Schechter function and the DPL (see text).

MAIN-SEQUENCE OF STAR-FORMING GALAXIES

- Schreiber + 2015
 Popesso + 2023
 Clarke + 2024
- $(2.7 \le z \le 4)$
- $\begin{array}{c} \text{Khusanova} + 2021 \\ \text{(ALPINE; } z \sim 4.5) \end{array}$

Distribution of simulated galaxies aligns with empirical relations

SFR-M_{MOL} RELATION IN MARIGOLD GALAXIES

REACTION RATE CALCULATION

- Compute reaction rate at a given $n_{\rm H}$
- For temperature-sensitive reactions – read out the T corresponding to a given $n_{\rm H}$ using the $T - n_{\rm H}$ relation
- Integrate over $n_{\rm H}$ weighing by the **PDF** to obtain the cell-level reaction rate
- Repeat for all reactions in the network

HYACINTH captures the effect of microscopic (i.e., unresolved) density fluctuations on the macroscopic (i.e., on resolved scales) chemical abundances.

COMPARISON OF APPROACHES

COMPARISON WITH OBSERVATIONS

32

THE CONVERSION FACTOR $\alpha_{[CII]}$

Distribution of $\alpha_{[CII]}$

$$\alpha_{\rm [CII]} = \frac{M_{\rm mol}}{L_{\rm [CII]}}$$

The numerical factor used to convert the observed [CII] luminosity to a molecular gas mass

