

CII Science and Cross-Correlation at Cosmic Noon

Ryan Keenan

Max Planck Institute for Astronomy, Heidelberg, Germany

CII Science and Cross-Correlation at Cosmic Noon

Ryan Keenan

Max Planck Institute for Astronomy, Heidelberg, Germany Terahertz Intensity Mapper – "European Project Lead"

The TIM Team

<u>University of Illinois</u> J. Vieira (PI), J. Filippini, J. Alameda, H. Athreya, B. Brendal, J. Fu, K. Garcia, S. O'Donnell, M. Van Cuyck

<u>Caltech/JPL</u> R. Janssen, M. Bradford, S. Hailey-Dunsheath, L.-J. Liu

<u>Arizona State University</u> C. Groppi, D. Joralmon, P. Mauskopf,

T. Saeid

<u>University of Arizona</u> D. Marrone, I. Lowe, E. Mayer <u>University of Pennsylvania</u> J. Aguirre, S. Agrawal, J. Bracks,

A. Manduca

Max Planck Institute for Astronomy R. Keenan

<u>Harvard & Smithsonian</u> G. Keating <u>University of Chicago</u> J. Zebrowski Princeton University S. Tartakovsky

Princeton University S. Tartakovsky

TIM Technological Goals

- Raising the TRL of relevant technologies by deploying them in a near-space environment
 - Kilopixel Low-noise MKID arrays
 - Low power RFSoC-based readout systems
- Demonstrating these will strengthen the case for future missions
- Training the next generation of instrument builders and designers

TIM Science Goals

tage=9.71 Gyr

Pathfinding mission for [CII] line intensity mapping from space

tage=3.82 Gyr

 $t_{age} = 4.27 \text{ Gyr}$

z = 1.0

tage=5.85 Gyr

z = 0.65

- Bridges regimes covered by ground-based facilities and future space missions
- Target a redshift regime with ample ancillary information and opportunities for cross-correlation
- Measure the total [CII] luminosity in stellar-mass-selected stacks of galaxies in the GOODS-S field and use these to investigate changes in star formation modes
- Directly detect the brightest [CII] emitters in the GOODS-S field

z=1.70

z = 1.35

tage = 8.59 Gyr

z = 0.36

TIM Science Background

Why Terahertz? Why [CII]?

LIM in the Far-Infrared

LIM in the Far-Infrared

LIM in the Far-Infrared

The [CII]-SFR Connection

- Antarctic Stratospheric Balloon ('26/'27 Austral summer launch)
- Evolution of BLAST: gondola, pointing system, cryostat, readout
- Telescope Specifications
 - 2m primary mirror, Cassegrain design
 - ~25" resolution at 240µm
 - 5µm surface accuracy
 - 1 degree field of view

Instrument Specifications

- Two grating spectrometers
- 240 317 & 317 420 µm at R~250
- 1 degree slit length
- Liquid-Helium cryostat with sorption cooler (~250mK)
- 2x MKID arrays with ~3600 detectors each

9/23/24 6:42 am

4.-1

0.00

9/23/24 7:26:51 am

2

9/23/24 7:28:43 am

Đ.

9/23/24 10:36 am 120kft altitude

Mission Integration Lab Tucson, Arizona

Up next: science flight from Antarctica in 2026/2027

Ryan Keenan | LIM25 | June 2025

TIM Mission + Science Overview

29

NASA

TIM Observational Strategy

Science with TIM

Direct Detections

Evan Mayer

~0-10 detections expected across full TIM band

[CII]-SFR Calibration

The [CII] Power Spectrum

The [CII] Power Spectrum

Ryan Keenan | LIM25 | June 2025

The [CII] Power Spectrum

Keenan et al. in prep Bracks et al. in prep

Foreground Separation

- In TIM regime (0.5<z<1.7, 240 μ m< λ <420 μ m), [CII] dominates the interlopers outside of $z\sim0$ bright sources, easy to mask out.
- The main challenge will be CIB.

Mathilde Van Cuyck in TIM's cryostat

Methods investigated:

Srini Raghunathan

 10^{0}

The Glorious Future

The Glorious Future

The Glorious Future

(Hire me!

Take Home Message

TIM will

- detect the [CII]-Galaxy crossspectrum at z~1, with further opportunities for cross-correlation tracers like CO and HI
- provide a bridge to EoR [CII] experiments in an easier redshift regime
- demonstrate key technologies for future LIM experiments.

Backup Slides