CCAT: Submillimeter Line Intensity Mapping of [CII] and CO with FYST

Jonathan Clarke Doctoral student University of Cologne On behalf of the CCAT Collaboration

03.06.25

CCAT: Submm LIM of [CII] and CO with FYST (LIM2025, LAPTh, Annecy, France)

1/13

FYST/CCAT

Fred Young Submm Telescope

CCAT Collaboration, multi-national -Cornell, Bonn/Cologne, MPI Garching, multiple Canadian institutions

6m telescope, focus on Submm astronomy

Cerro Chajnantor - extra 600 m above ALMA/plateau

(CCAT Collab+23)

Prime-Cam and EoR-Spec

Prime-Cam receiver does LIM via EoR-Spec module

Fabry-Perot Interferometer

KIDS (Kinetic Inductance detectors)

• **6000** detectors for EoR-Spec (equally distr.)

EoR-Spec: On-chip spectrometer module, 210 – 420 GHz with R ~ 100

Total Field of View (FoV): (~1.3°/module) Angular resolution 33" to 58" (

Planned LIM at the Epoch of Reionisation (EoR)

Aiming for **[CII]** and **CO** line intensity mapping with auto-correlations

Potential [OIII] detections with cross-correlations

210 – 420 GHz corresponds to 3.5<z_{rcm}<8.1 - epoch of reionisation

03.06.25

Ζ:

CCAT: Submm LIM of [CII] and CO with FYST (LIM2025, LAPTh, Annecy, France)

Deep Spectroscopic Survey (DSS) fields

- 4000 hours over
 E-COSMOS,
 E-CDF-S in 5 years
- Align with prior COSMOS surveys, Euclid

2x2 deg² fields

~36Mpc a side at z~8

Survey fields

03.06.25

CCAT: Submm LIM of [CII] and CO with FYST (LIM2025, LAPTh, Annecy, France)

5/13

Deep Spectroscopic Survey (DSS) fields

- 4000 hours over
 E-COSMOS,
 E-CDF-S in 5 years
- Align with prior COSMOS surveys, Euclid

2x2 deg² fields

~36Mpc a side at z~8

Survey fields

03.06.25

CCAT: Submm LIM of [CII] and CO with FYST (LIM2025, LAPTh, Annecy, France)

5/13

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

First half of 2024 - final testing of chassis, Duisburg

03.06.25

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

Packing up

(End of 2024)

03.06.25

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

Voyage of the Sloman Discoverer Antwerp 2/04 Bilbao 2/07 20.000° Exit Atlanti Barrangetilla 2/24 Panama 2/27 Pisco 3/04 -20.000 SLOMAN DISCOVERER Arrival at dock 3/22 Coquimbo 3/08 23 3/24/2025 CCAT/FYST History

Journey of the telescope, Feb. 2025

03.06.25

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

Arrival in Santiago, March. 2025

03.06.25

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

Arrival on Mountain

April 2025

Assembly as of May 2025 (first light early 2026, PrimeCam likely late 2026/early 2027)

Current status

May 2025

03.06.25

Predictions for LIM

For simulations use nominal bands **210-245**, **260-300**, **330-370**, **390-420GHz** to avoid atmospheric features

Even after removing atmospheric+white noise, and accounting for scan patterns (**see Ankur Dev, Yoko Okada talks**), total CO and [CII] signal are comparable.

For [CII] power spectra, need to remove CO foregrounds

03.06.25

Predictions for LIM

3°00'

2°30'

Chnl 333GHz Filtered and Binned Output:

[CII] Signal + Noise Sim.

For simulations use nominal bands 210-245, 260-300, **330-370, 390-420GHz** to avoid atmospheric features

Even after removing atmospheric+white noise, and accounting for scan patterns (see Ankur Dev, Yoko **Okada talks**), total CO and [CII] signal are comparable.

(degrees) 00' Declination For [CII] 10³ power 1°30' Intensity (Jy/sr) spectra, need to remove CO 150°30' 10^{1} 00' 149°30' 00' Right Ascension (degrees) Total CO foregrounds [CII] [0]]] 10^{0} 5 10 15 20 25 30 n 250 300 350 400 200 Intensity [µK] v (GHz)

03.06.25

CCAT: Submm LIM of [CII] and CO with FYST (LIM2025, LAPTh, Annecy, France)

7/13

Recovering [CII] (Targeted Masking)

(*Karoumpis+2024*) focused on targeted masking

Applied CO models to IllustrisTNG300 simulation set

Assuming **knowledge of foreground sample** (have with COSMOS, Euclid).

- Know certain galaxies should be major CO emitters
- Use to **systematically mask** out CO from each line transition

Masking the CO at $k = 0.02 - 0.32 \text{ Mpc}^{-1}$

Recovering [CII] (Targeted Masking)

Can statistically determine optimal masking point from the tomography to mitigate overmasking

Recovering [CII] (Existing Catalogue Data)

Alternatively, can use galaxy catalogue data to construct simulated maps

• COSMOS2020, Euclid Quick Data Release 1 bulk property data

Empirical data - lower limits (Clarke+24)

Can extrapolate out using known incompletenesses

Most work done on smaller COSMOS2020 field (1.2x1.2deg²)

410GHz, COSMOS2020, [CII]+CO map

Recovering [CII] (Existing Catalogue Data)

Tested targeted masking techniques that have been developed

Run into issues - overmasking a concern

- CO heavily overlaps in location with [CII], reducing signal of both
- Sample variance issue covering ~¹/₃ of area of actual E-COSMOS
- (<u>Gkogkou+23</u>)
- Still comprises part of field must be careful

Recovering [CII] (Spectral line deconfusion)

Work of *Tejas Oak* (poster has more details)

At low frequencies, masking is less effective (increased uncertainty from survey volume loss)

With cross correlation, product of line biases create limits on individual line luminosities

Spectral line deconfusion (<u>*Cheng+20*</u>): ALTERNATIVE, fitting CO spectral line template to the intensity map and converging at a sparse distribution of line emitting sources.

Enhanced w/ priors from foreground e.g. COSMOS field

03.06.25

Recovering [CII] (Potential of lower frequency range)

Lower frequency bands for future on-chip spectrometers (90GHz, 150GHz) are being considered (far future!). Allows for:

- **CO autospectra**, synergies with other detections
- **Blind masking** (pair bright voxels, model emission, mask out if CO. Similar to TIFUUN)
- Cross correlation opportunities (<u>Roy+24</u>), including triple CC

Plus more opportunities for synergies with other experiments!

03.06.25

Summary

- FYST currently being assembled, first light 2026, LIM starting 2026/2027
- Focus on [CII] and CO LIM first round of observations 210-420GHz
- Assuming noise properly treated, need to isolate [CII] signal
 - Targeted Masking
 - Spectral line deconfusion
 - Cross-correlations
- Additional low frequency bands being considered for future spectrometer

https://ccatobservatory.org/

We are hiring!

1) D. Riechers (U Cologne, EoR-Spec DSS Science Lead):

- Postdoc position: DSS Predictions and Analysis & Cross-Correlations

2) D. Riechers, J. Baselmans (TU Delft, Global Faculty U Cologne)

[AMKID, DESHIMA 1+2, TIFUUN, PRIMA]

- Postdoc & PhD position: CCAT/FYST 2nd generation instrumentation;

focus broad-band multiplexing (sub)mm spectroscopy

Ads to be put out; positions starting 2026, securely funded until end of 2032

Interested? Provide your information to Jonathan or Yoko to be looped-in

More info: https://dynaverse.astro.uni-koeln.de/

03.06.25

Euclid vs COSMOS

