a vital pathfinding TIME for mm-wave LIM:

the status of the Tomographic Ionised-carbon Mapping Experiment in 2025

Dongwoo Chung

LIM25 at CNRS/LAPTh, Annecy, France

2025/06 1a / 15

file under 'status'

photo: K Lau

overall background and goals of TIME
 outcomes from 2022 and 2024 *commissioning* runs
 ongoing work for 2025 *science* deployment

the Tomographic Ionised-carbon Mapping Experiment

)) Cornell L

Abigail Crites [PI] Victoria Butler Dongwoo Chung Ben Vaughan Shwetha Prakash Selina Yang Sophie McAtee Sofia Pereira Sukhman Singh

Jamie Bock Matt Bradford Tzu-Ching Chang Yun-Ting Cheng Clifford Frez Jonathon Hunacek Kenny Lau Paolo Madonia Lorenzo Moncelsi Anthony Turner

Chao-Te Li Tashun Wei

Dan Marrone Nick Emerson Isaac Trumper Evan Mayer Ian Lowe

Mike Zemcov Audrey Dunn Fiona Hufford Tess Caze-Cortes Caleb Greenburg

UCI University of California, Irvine Isantha Cooray

Samantha Berek Dang Pham Baria Khan Lisa Nasu-Yu

Ryan Keenan

Northwestern • LER A Guochao (Jason) Sun

photo via E Mayer and T Natol

Dongwoo Chung

2025/06 3a / 15

the Tomographic Ionised-carbon Mapping Experiment

Z-Spec

 compact waveguide

200–300 GHz

 TES bolometers, well proven and understood in CMB contexts

grating, as used

 [C II] at z ≈ 7
 various CO lines at z ~ 1

the Tomographic Ionised-carbon Mapping Experiment

200–300 GHz

- [C II] at *z* ≈ 7
- various CO
 - lines at $z \sim 1$
- TES bolometers, well proven and understood in CMB contexts
- compact waveguide grating, as used on CSO with Z-Spec

 \Rightarrow demonstrating the promise of LIM / wide-field hyperspectral imaging with the most mature mm-wave technologies

TIME the Tomographic Ionised-carbon Mapping Experiment

TIME

200–300 GHz **[**CII] at $z \approx 7$ various CO lines at $z \sim 1$

- TES bolometers, well proven and understood in CMB contexts
- compact waveguide grating, as used on CSO with Z-Spec

 \Rightarrow demonstrating the promise of LIM / wide-field hyperspectral imaging with the most mature mm-wave technologies

TIME instrument design

- **2** \times 16 feedhorns behind a polariser grid
- one grating spectrometer bank per polarisation
 - 183–326 GHz
 - **a** $R \sim 100 (\delta \nu \sim 2-3 \text{ GHz})$
- six modules of TES detectors per spectrometer
 - three LF (183–240 GHz), 8 frequency channels per module
 - three HF (240–326 GHz), 12 frequency channels per module

 \Rightarrow 2 \times 16 \times 60 = 1920 detectors across 12 TES modules when fully populated

The instrument design

 $\Rightarrow 2 \times 16 \times 60$ = 1920 detectors across 12 TES modules when fully populated

- \blacksquare detectors designed for \approx 300 mK
- some cold optics as well
- cooled with a set of helium sorption fridges, backed by PT and JT cryocoolers

2025/06 5b / 15

TIME science design

Figure: Sun+21 (arXiv:2012.09160)

- initial survey targeting
 1.3 deg × 0.43 arcmin
 (180 × 1 beams) over
 ~ 10³ hours
- slices of COSMOS and Stripe 82 likely, possibly additional field overlapping with COMAP/HETDEX
- also anticipating ancillary science from observations of galaxy clusters, protostellar cores, ...

TIME 2022 commissioning run

photo D Marrone

operated from the Arizona Radio
 Observatory 12 m telescope, at Kitt Peak

- verified on-sky focus, beams with partially integrated instrument (only one spectrometer, no polariser grid)
- verified hyperspectral imaging with both continuum and spectral line sources

view of the Galactic Centre

paper in prep (also prev. shown at various LIM and SPIE meetings)

view of the Galactic Centre

paper in prep (also prev. shown at various LIM and SPIE meetings)

view of the Galactic Centre

ther observations

another paper also in prep

G49.5-0.4 SF region:

OMC-1, 2022/02/02, broadband map (log-scale, 25" FWHM Gaussian filter)

OMC 'contact sheet'

another paper also in prep

OMC 'contact sheet'

another paper also in prep

OMC 'contact sheet'

spectrum from 3.25 hours of observations

'contact sheets' and spectrum via S Yang (Cornell PhD student w/ Abby Crites) $I \sim \nu^4 \Rightarrow \beta \approx 2$ consistent with previous NIKA2 maps, CONCERTO?

TIME 2024 commissioning run

- we attempted to deploy detectors across both spectrometers, with a brand new polariser grid and cryo-mechanical design.
- in lab tests and at Kitt Peak, we discovered key cryogenic and thermo-mechanical obstacles to a happy healthy instrument.
- we are now in the process of implementing remedies and improvements for our upcoming return to Kitt Peak this winter.

ongoing work photos (and work) courtesy K Lau + JPL staff

new cable geometry to improve detector readout

re-fabrication of detectors to fix thermal shorts

The ongoing work

nodes at Cornell and Caltech (+ weather station dev at RIT)

integrated receiver testing at Cornell

component testing possible with 'pinkie' cryostat at Caltech

TIME conclusions

- TIME represents a set of well-understood technologies combined into a pathfinding experiment for mm-wave LIM, surveying [C II] at EoR and CO rotational lines near 'cosmic noon'.
- our commissioning runs in 2022 and 2024 provided important tests of the TIME instrument—some wildly successful, some pointing to avenues of clear improvement.
- we expect to begin science observations this upcoming winter, and are hard at work understanding our previous on-sky data and our current instrument to enable future success.