Spectral Datacube Cleaning for CCAT Deep Spectroscopic Survey

June 2-6, 2025

Ankur Dev

LIM25 - Annecy

In collaboration with:

Christos Karoumpis¹ ; Dongwoo Chung ³ ; Frank Bertoldi ¹ ; Gordon Stacey ³ ; Jonathan Clarke ² ; Kaustuv Basu ¹ ; Rodrigo Freundt ³ ; Tejas Oak ¹ ; Thomas Nikola ³ ; Yoko Okada ²

- + CCAT Collaboration
- ¹ University of Bonn,
- ² University of Cologne,
- ³ Cornell University

Cornell University

universitätbonr

Ankur Dev

LIM25 - Annecy

EoR-Spec Detector Arrays

Each FPI setting allows simultaneous spectral and spatial multiplexing

 2 frequency bands, 210-315 GHz (two LF arrays) and 315-420 GHz (one HF array)

• FPI 2nd and 3rd order resonance modes observed simultaneously by low and high freq arrays respectively

Fig: Mock EoR-Spec simulation for an FPI step, built on TOAST framework

EoR-Spec Spectral Coverage

Lab testing of the instrument passbands is currently underway at Cornell University

Preliminary Lab Results

Fig: EoR-Spec Passband (feedhorn simulations and filter measurements) overlaid with atmospheric transmission for 2nd quartile weather is shown.

Credits: Thomas Nikola, Rodrigo Freundt, Yoko Okada, Gordon Stacey, EoR-Spec instrument team

EoR-Spec Spatial and Spectral scanning Continuous and Uniform spectral coverage achieved in 15 FPI steps

Detector distribution across Frequency bins

Spectral binning to equalize detector coverage per channel

 Each frequency bin integrates signal contributions from multiple FPI steps

 Each FPI step has a Lorentzian spectral profile with

$$\mathrm{FWHM} = \Delta
u = rac{
u}{R}$$

Impact of systematics: Atmospheric Noise

Atmosphere introduces a low frequency noise (1/f) component

- Atmospheric turbulence: source of brightness temperature variations, with spectral and temporal correlations
- Water vapour emission : inhomogeneously distributed
- Significant contribution at sub-mm frequencies
- Harder to recover large scale power: Quantify signal loss

Fig: Atmospheric transmission at Cerro-Chajnantor (Choi+2020)

Fig: Array of detectors observing through inhomogeneous atmosphere (Morris+2022) ; Adapted with FYST model at Cerro Chajnantor (www.ccatobservatory.org)

June 2-6, 2025

Ankur Dev

LIM25 - Annecy

Scanning E-COSMOS with Lissajous pattern

We simulate E-COSMOS field scans with 135 hours of integration per FPI step

- Simulating 333 368 GHz spectral range, observing [CII] signal map including instrument and atmospheric 1/f noise
- Mock observation with 500 detectors per spectral bin (50% of total detectors to be deployed)

Fig: Scanning E-COSMOS field with Lissajous scans at different elevations

Raw time-stream data includes low-frequency drifts and motion-induced variations

- Data Stage 0 : Mock Raw Data
- Data Stage 1 : Detrended Data
- Data Stage 2 : Az-El model corrected data
- Data Stage 3 :
 Common Mode Removal
- Data Stage 4 : Leading components removal with PCA

Low-order polynomial filtering removes slow drift trends from time-stream data

- Data Stage 0 : Mock Raw Data
- Data Stage 1 :
 Detrended Data
- Data Stage 2 :
 Az-El model corrected
 data
- Data Stage 3 :
 Common Mode Removal
- Data Stage 4 : Leading components removal with PCA

Az-El pointing template removes systematics from telescope motion and turnarounds

- Data Stage 0 : Mock Raw Data
- Data Stage 1 : Detrended Data
- Data Stage 2 : Az-El model corrected data
- Data Stage 3 :
 Common Mode Removal
- Data Stage 4 : Leading components removal with PCA

Common Mode removes time-correlated systematics shared across the entire array

- Data Stage 0 : Mock Raw Data
- Data Stage 1 : Detrended Data
- Data Stage 2 :
 Az-El model corrected
 data
- Data Stage 3 :
 Common Mode Removal
- Data Stage 4 : Leading components removal with PCA

PCA removes temporally and spatially correlated low-frequency and modes

- Data Stage 0 : Mock Raw Data
- Data Stage 1 : Detrended Data
- Data Stage 2 :
 Az-El model corrected
 data
- Data Stage 3 : Common Mode Removal
- Data Stage 4 : Leading components removal with PCA

Data Processing Stage 4: PCA Cleaned data

PCA on Time-stream data: Explained Variance

Only the most dominant components are removed to preserve astrophysical signal

Binned Maps for E-COSMOS

Using a 4 deg² cutout from the deepest region in the field, excluding map edges

Comparison of Simulations: Signal+Noise vs. Noise-Only (No Signal) We process Signal+Noise and Noise-only simulations through the same pipeline to quantify signal attenuation

Chnl 333GHz Filtered and Binned Output: [CII] Signal + Noise Sim. 3°00' 2°30' Declination (degrees) 00' 1°30' 150°30' '00 149°30' 00' Right Ascension (degrees) 0 5 10 15 20 25 30 Intensity [µK]

Ankur Dev

Comparison of Signal Maps: Input Intrinsic [C II] vs Recovered

With just 50% of planned observations, bright [C II] sources are recovered (shot-noise regime), and faint clustered structures begin to emerge

Chnl 333GHz Recovered [CII] Signal: Noise-subtracted Map

Ankur Dev

NASA LAMBDA archive

TNG based [CII] intensity simulations at z~4 (Karoumpis+2021, Dev+in_prep)

Investigating effect of filtering on [CII] Power Spectrum

[CII] Map Power Spectrum at z ~ 4.4 Filter and Bin-reduction pipeline for 4 deg^2 survey, $N_{\text{heams}} \sim 500$ 104 [CII] Signal (Input) [CII] Signal + White Noise 10^{3} Post-reduction: CM + PCA 3 components removed Post-reduction: No CM + PCA 3 components removed Post-reduction: No CM + PCA 4 components removed 10² $k^{3}P_{3D}(k)/(2\pi^{2})[(\mu K)^{2}]$ 10¹ 100 10^{-1} **Preliminary Results** 10^{-2} 10^{-3} 10^{-1} 10⁰ Comoving k[Mpc⁻¹]

Shot noise regime at

z ~ 4.4 can be detected and constrained even with 50% of planned observations

 Low-k modes shows power loss: Filtering affects the large scales; need alternative mitigation techniques

Quantifying Signal loss from mock Pipeline with Transfer Function

Require future work to recover large scales:

- Fourier Template fitting
- Destriping / Maximum-Likelihood
- Bayesian methods for incorporating noise priors
- Investigate higher scan speeds mitigating 1/f noise contamination

Take Away Summary

We are building LIM data reduction pipelines, investigating systematics and exploring map-making methods.

Ankur Dev

Back-up Slides follow...

- **Time Ordered Astrophysics Scalable Tools (TOAST)** software framework (https://github.com/hpc4cmb/toast)
- Built on the Errard+2015 3D-model of the atmosphere total intensity emission in the mm and sub-mm wavelengths.

t = 1464749400.0 s, r = 0.0 m line of sight 34 focal plane 0.06 0.04 0.02 el [deg] 0.00 Fig left: Example of TOAST Fig right: Pair of detectors observes along -0.02 Simulated turbulent atmosphere a line of sight. (from Errard+2015) -0.04(Image Credit: Julian Borrill, https://crd.lbl.gov/assets/Uploads/ resample -0.06 26 d/ResizedImage400179-atm-10-30-10v1.gif) 10 14 16

Ankur Dev

beam

PCA on Time-stream data: Removed Components

Ankur Dev